GLAST DES TESTS SOUS FAISCEAU AU LAT EN ORBITE

Johan Bregeon

INFN Sez. Pisa

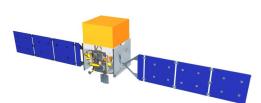
31 Mars 2008

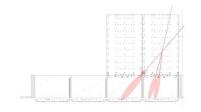
Conclusions

GLAST: LARGE AREA TELESCOPE

Construction Performances

ETUDE DES PULSARS


Population et modèles Le cas de Vela


Tests sous faisceaux

Intégration et tests Prise des données Résultats préliminaires Etat actuel

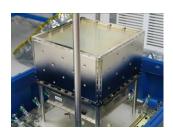
ISOC

Flux des données Contrôle en ligne

GLAST

- Collaboration internationale
 - USA, Japon, France, Italie, Suède, Allemagne
- 2 instruments embarqués
 - LAT : Large Area Telescope
 - GBM: Glast Burst Monitor
- Grand champ de vue
 - 20% du ciel observé à chaque instant
 - tout le ciel couvert toutes les 3h (2 orbites)
- Large gamme d'énergie
 - LAT : 20MeV < E < 300GeV
 - GBM: 10keV < E < 25MeV

- Trajectographe à piste de Silicium
 - 18 couches XY avec convertisseur en tungstène
 - ightarrow direction du γ incident
- Calorimètre électromagnétique en Csl
 - 8 couches de 12 détecteurs Csl
 - arrangement hodoscopique
 - \rightarrow énergie du γ et image de la gerbe
- Détecteur d'anti-coincidence (ACD)
 - 89 tuiles de plastique scintillateur
 - → rejet des particules chargées
 - + détecteur segmenté : réduction du self-veto à haute énergie

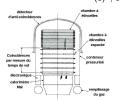

Etude des pulsars

Tests sous faisceaux 00

ISOC

Conclusions

CONSTRUCTION

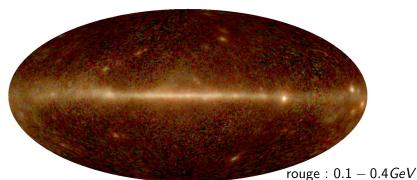

PERFORMANCES

Caractéristique/Mission	EGRET	GLAST-LAT
Durée	1991-2000	2008-2013/2018?
Champ de vue (sr)	0.5	~ 2.4
Résolution Angulaire (1)	1.3°	0.4°
Surface Effective (2)	1100cm ²	$\sim 9000 cm^2$
Sensibilité (3)	10-7	4×10^{-9}
Résolution en énergie ⁽²⁾	20%	10%
Gamme d'énergie	30MeV — 30GeV	20MeV — 300GeV
Temps Mort	100ms/evt	$26.5 \mu s/evt$
Précision de la datation	$100 \mu s$	< 3us

Caractéristiques estimées pour le GLAST-LAT et pour son prédécesseur EGRET :

(1) à 1*GeV* pour 1 photon (2) à 100*MeV* sur l'axe

(3) $\gamma cm^{-2} s^{-1}$ au-dessus 100MeV sur 1an.



EGRET VS GLAST-LAT

Mission EGRET

Plan

vert : 0.4 — 1.6 *GeV*

bleu : > 1.6 GeV

EGRET VS GLAST-LAT

Simulation 1an LAT

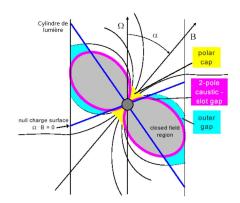
Plan

- Le Soleil et la Lune
- Restes de supernova
 - Matière noire...

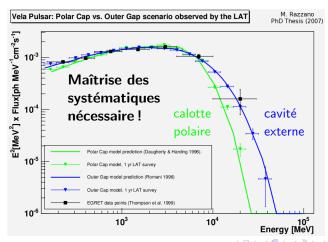
- Sursauts gamma
- Binaires X, microquasars

rouge: 0.1 — 0.4*GeV*

vert: 0.4-1.6 *GeV*


bleu : > 1.6 *GeV*

PULSARS


- Population en 2007...
 - 2000 pulsars radio, dont ~ 80 avec T < 10 ms
 - 7 pulsars gamma vue par EGRET
- …attendue après GLAST
 - 50 − 100 pulsars jeunes et énergétiques
 - 10 pulsars millisecondes
 - 50 100 pulsars *radio* quiet (Geminga)
 - → étude statistique des populations (origines, mécanisme de formation)

⇒ Modèles d'émission haute énergie

LE CAS DE VELA

• Distinction entre les modèles d'émission

imperfection de la simulation Monte-Carlo

- connaissance des fonctions de réponse de l'instrument (surface effective, résolution angulaire, résolution en énergie)
- qualité des données prises en orbite
- algorithmes de sélection des photons
- modélisation du fond gamma diffus
- méthode d'analyse du spectre de la source
- (...)

Plan

⇒ Sources multiples et additives!

ISOC

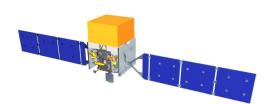
Conclusions

GLAST: LARGE AREA TELESCOPE

Construction Performances

ETUDE DES PULSARS

Population et modèles Le cas de Vela


Tests sous faisceaux


Intégration et tests Prise des données Résultats préliminaires Etat actuel

ISOC

Plan

Flux des données Contrôle en ligne

Module d'étalonnage sous faisceau

• Intégration et tests

- 3 calorimètres
- 2 trajectographes
- matériel qualifié spatial
- système d'acquisition
- Étalonnage en énergie
 - muons cosmiques et injection de charge
 - lumière : calorimètre
 - ToT^a: trajectographe

^{• 2.5} towers, ~1/8 of the LAT
• 110k Si strip
• 288 Csl logs

TKR 8

TKR 16

tower 2

tower 1

bay 0

CAL 101

CAL 119

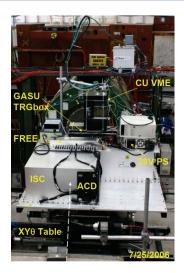
CAL 109

^aTime Over Threshold

Prise des données

- 1800 *runs* pour 100M evts
 - 4 semaines au CERN-PS
 - 11 jours au CERN-SPS
 - 3 jours au GSI

Plan

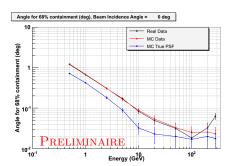

 \rightarrow \sim 60 personnes

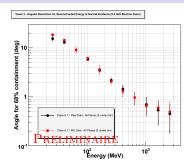
- 330 configurations
 - angle d'incidence
 - point d'impact
 - intensité du faisceau
 - configuration des registres

Particules	Energies	
γ	0 — 2.5 <i>GeV</i>	
e ⁻	1, 5, 10, 20, 50, 100, 200, 280 <i>GeV/c</i>	
e^+	1GeV $/c$ à travers une cible en MMS	
р	6, 10, 100, 150 <i>GeV/c</i>	
π	5, 20 <i>GeV/c</i>	
C, Xe	1, 1.5 GeV/n (ions lourds)	

Zone expérimentale

Plan

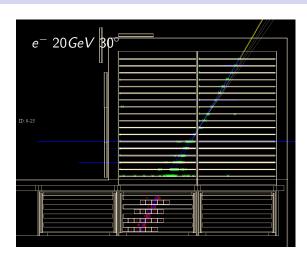

détecteur compact permettant une grande liberté de mouvement pour couvrir l'espace des phases



RÉSOLUTION ANGULAIRE

• Photons γ

- γ produits par rayonnement de freinage
- E < 2500MeV
- angle : $0^{\circ} < \theta < 45^{\circ}$



- Électrons
 - 500 MeV < F < 280 GeV
 - angle : $0^{\circ} < \theta < 45^{\circ}$
- \Rightarrow Accord données/MC $\sim 5\%$

 Pré-cascade dans le trajectographe

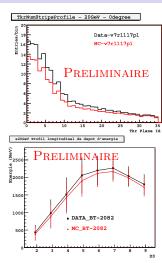
Plan

- Profils longitudinaux et transversaux
- Échelle absolue en énergie

ISOC

Conclusions

000000


Cascades électromagnétiques (2)

Nombre de pistes de Silicium touchées

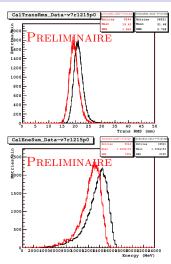
- pré-cascade EM dans le trajectographe (tungstène)
- \rightarrow écart données/MC > 10%

Énergie déposée par couche

- forme bien reproduite
- énergie plus grande dans les données
- décalage sur le nombre de longueur de radiation

000000

Cascades électromagnétiques (3)


Profil Transverse

Plan

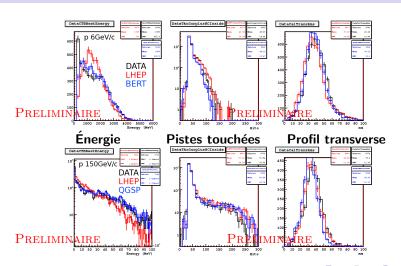
- CalTransRms ~ moment d'inertie pesé par l'énergie
- Δ7 15% variant sur l'espace des phases (énergie, angle)
- ? reconstruction de la position longitudinale (piédestaux, asymétrie, étalonnage)

Énergie déposée totale

- énergie plus grande dans les données
- Δ8% en moyenne sur l'espace des phases (énergie, angle)
- ⇒ Écarts significatifs Données/MC

000000

Plan


Cascades hadroniques (1)

- Identification des photons
 - taux de protons $\sim 10^5 imes$ Taux de γ
 - l'ACD permet l'identification de l'essentiel des particules chargées
 - mais il n'est pas parfait!
 - algorithmes d'identification basés sur le Monte-Carlo

déclenchement	5 <i>kHz</i>
filtre à bord	400 <i>Hz</i>
γ au sol	qqs Hz

- Modèles de cascades hadroniques dans GEANT4
 - BERT : Cascade intranucléaire de Bertini (1 GeV < E < 10 GeV)
 - LHEP : modèle par défaut (10 MeV < E < 10 TeV)
 - QGSP : plasma de quarks-gluons ($20 \, GeV < E < 10 \, TeV$)
 - → contrôle des observables sur la gamme d'énergie
 - → impact des différents modèles sur l'identification des particules

CASCADES HADRONIQUES(2)

Apports des tests sous faisceau

- Validation de la simulation Monte-Carlo
 - résolution angulaire du trajectographe
 - profil des cascades électromagnétiques
 - choix des modèles de physique hadronique
 - → différences résiduelles significatives Données/MC
 - ightarrow interaction avec les développeurs de GEANT4
- Analyse en cours...

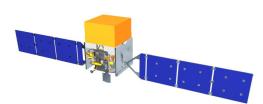
- nouvel étalonnage des détecteurs (procédure ajournée)
- mesure plus robuste du profil transverse, moins dépendante de l'étalonnage en énergie
- ajout de biais systématiques dans le Monte-Carlo (une fois compris et mesurés...)
- \Rightarrow Mesure des incertitudes systématiques induites sur l'identification des γ et la réponse de l'instrument en cours

GLAST: LARGE AREA TELESCOPE

Construction Performances

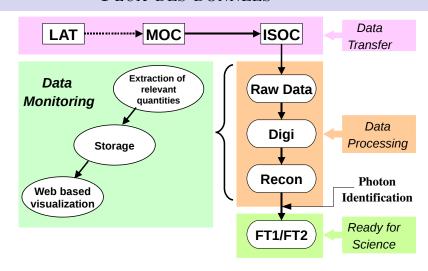
ETUDE DES PULSARS

Population et modèles Le cas de Vela


Tests sous faisceaux


Intégration et tests Prise des données Résultats préliminaires Etat actuel

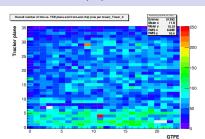
ISOC


Plan

Flux des données Contrôle en ligne

FLUX DES DONNÉES

Qualité des données (1)

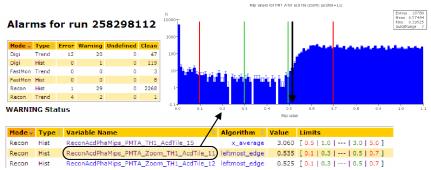

Données brutes : FastMon

Plan

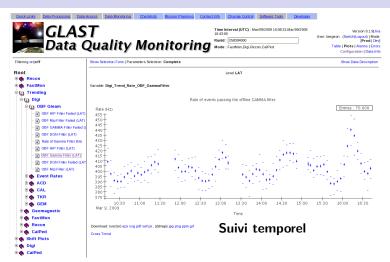
- graphique dans l'espace des phases de l'électronique
- révèle les problèmes du matériel

Données reconstruites

- étalonnage des détecteurs
- seuils des discriminateurs (déclenchement, veto)
- algorithmes de reconstruction



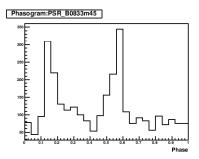
Conclusions


Qualité des données (2)

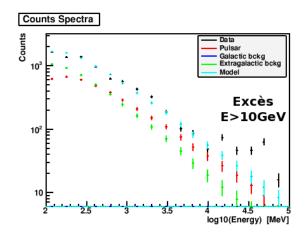
- Système d'alarme global
 - algorithmes multiples (moyenne, pics, seuils...)
 - choix des niveaux d'alarme et rapports détaillés
 - fichiers xml de configuration

0 0 00 00 00 000000

Interface Web



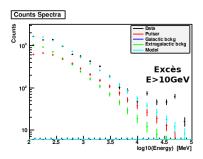
... RETOUR À VELA (1)


- Operation Simulation 2 : OpsSim2
 - simulation de 2 semaines de prise de données en orbite
 - production des données de la simulation Monte-Carlo
 - reprocessing par la chaîne standard d'analyse des données, en partant du format binaire compressé en provenance du satellite

⇒ Vela durant l'OpsSim2

- phasograme : vérification du *Timing* et de l'efficacité de la sélection de photons dans les pics
- source punctiforme : vérification de la PSF
- flux : vérification de l'acceptance

... RETOUR À VELA (2)



Conclusions

Tests sous faisceaux

ISOC ○ ○ Conclusions

... RETOUR À VELA (2)

- Données corrompues lors de la conversion du format Monte-Carlo au format binaire compressée
 - manque 2 bits au *ToT* ...
 - taux de particules chargées élevé après la sélection des γ
- ⇒ Comprendre l'instrument et l'analyse des données

Conclusions

- J-46: lancement prévu le 16 Mai 2008 de Cap Canaveral
- → étude des données faisceau

- nouvel etalonnage du module d'étalonnage
- ajout des systématiques mesurées dans le Monte-Carlo
- étude de l'impact des différences données/MC sur l'identification des photons
- → développement des outils de contrôles
 - identification des observables sensibles
 - amélioration des algorithmes et des seuils
- → étude des systématiques sur les fonctions de réponses de l'instrument et sur les méthodes d'analyse des sources

Conclusions

- J 46 : lancement prévu le 16 Mai 2008 de Cap Canaveral
- → étude des données faisceau

- nouvel etalonnage du module d'étalonnage
- ajout des systématiques mesurées dans le Monte-Carlo
- étude de l'impact des différences données/MC sur l'identification des photons
- → développement des outils de contrôles
 - identification des observables sensibles
 - amélioration des algorithmes et des seuils
- → étude des systématiques sur les fonctions de réponses de l'instrument et sur les méthodes d'analyse des sources
- + La mission GLAST sera renommée après son lancement : http://glast.sonoma.edu/glastname

