APC GWHEN@KM3NeT Plans 24/10/2024

People:

Pierre-Alexandre Duverne (KM3NeT+LVC), Sonia El Hedri (KM3NeT), Bruny Baret (KM3NeT)

Type: offline unmodeled* subthreshold

Data:

HEN: ARCA tracks+showers

GW: cWB pipeline triggers

Preprocessing: Joint optimisation « à la ANTARES »

<u>Postprocessing:</u> Joint likelihood (position, time, energies)

Outcome: Joint standard candle sources populations constrains / associations characterisation (if any...)

<u>Type</u>: offline unmodeled* subthreshold

Data:

HEN: ARCA tracks+showers

GW : cWB pipeline triggers

Same as ANTARES O1+O2+O3 (re-spin to come)

From ANTARES+O2 dead analysis
Parallel developpement of ANTARES and
KM3NeT pipelines

Preprocessing: Joint optimisation « à la ANTARES »

Postprocessing: Joint likelihood (position, time, energies)

Outcome: Joint standard candle sources populations constrains / associations characterisation (if any...)

<u>Type</u>: offline unmodeled* subthreshold

Data:

HEN: ARCA tracks+showers

GW: cWB pipeline triggers

<u>Coherent Wave Burst</u>: un-modeled signal serarch (excess power in phase in diffferent interferometers)

LVCPrivate → P.A. in LVC

<u>Preprocessing:</u> Joint optimisation « à la ANTARES »

Postprocessing: Joint likelihood (position, time, energies)

Outcome: Joint standard candle sources populations constrains / associations characterisation (if any...)

Klimeko et al Class. Quantum Grav. 25 114029 (2008)

Type: offline unmodeled* subthreshold

Data:

HEN: ARCA tracks+showers

GW: cWB pipeline triggers

Preprocessing: Joint optimisation « à la ANTARES »

Postprocessing: Joint likelihood (position, time, energie

Outcome: Joint standard candle sources populations constrains / associations characterisation (if any...)

based on (unpublished) ANTARES+LV(S5-S6) Maximisation of the number of joint detectable Standard candles @ given joint F.A.R.:

$$\mathcal{N}_{\text{GWHEN}}(\text{cuts}) = \int dt d^3 \Omega \mathcal{R}(r,t) \varepsilon_{\text{V}}(\text{cuts}) \varepsilon_{\text{GW}}(\text{cuts}; E_{\text{GW}},r)$$
0.16
0.14
0.12
3
0.08
0.08
0.06

OM, max at NHEN=1986
0.06

Outs+S5-S6 (2009-2010)

Need for generic HEN source spectrum

<u>Type</u>: offline unmodeled* subthreshold

Data:

HEN: ARCA tracks+showers

GW: cWB pipeline triggers

Preprocessing: Joint optimisation « à la ANTARES »

Postprocessing: Joint likelihood (position, time, energie

Outcome: Joint standard candle sources populations constrains / associations characterisation (if any...)

based on (unpublished) ANTARES+LV(S5-S6) Maximisation of the number of joint detectable Standard candles @ given joint F.A.R.:

 $\mathcal{N}_{\text{GWHEN}}(\text{cute}) = \int_{\mathcal{M}} \mathcal{M}_{\text{GWHEN}}(\text{cute}) = \int$

Diffenrent GW triggers wrt modeled

Much more HEN triggers than unmodeled triggered search

→ population collective effect

<u>Type</u>: offline unmodeled* subthreshold

Data:

HEN: ARCA tracks+showers

GW: cWB pipeline triggers

Preprocessing: Joint optimisation « à la ANTARES »

Postprocessing: Joint likelihood (position, time, energies)

Outcome: Joint standard candle sources populations constrains / associations characterisation (if any...)

Similar to all sub-th analyses : Go for a common one ?

 $\underline{\text{Type}}: offline \ unmodeled * \ subthreshold$

Data:

HEN: ARCA tracks+showers

GW: cWB pipeline triggers

Preprocessing: Joint optimisation « à la ANTARES »

Postprocessing: Joint likelihood (position, time, energies)

Outcome: Joint standard candle sources populations constrains / associations characterisation (if any...)

Open to collaborate to other searches Online (PA in GRANDMA) Definition of candidates for X-pipeline Physical interpretations and inputs (e.g. time window)

• •