Data challenges

Data Challenges

- Precisions on the DC program
 - Contents and goals of each DC
 - Precisions on the DC progression
 - We suggest to add pre-DC4 studies
 - DC organization

Data Challenges

	Meas noise	error snake	Calib noise	Color scatter	selection function	outliers	broken alpha	Pop drift dust	Lemaitre sampling	ldeal sampling	blind
DC1											
DC2											
DC3											
DC4-1											
DC4-2											
DC4											
DC5											

- Primary Goal :
 - Validate the consistency of the cosmology pipeline

• Features

- Only measurement noise + error snake
- Lemaitre-like sampling & spectra
- Ideal sampling
- 100 realizations

Metrics

- mu mu_true vs z (stacked over 100 realizations)
- Coverage tests (FIM^-1 vs. empirical covmat)

Challenges

 Mostly on NaCl : make sure it can train fast enough on O(100) realizations

- Primary Goal :
 - Validate EDRIS estimation of selection functions
 - Validate NaCl training on incomplete sample
- Features
 - Same as DC1, with incomplete samples
 - Using realistic selection functions, derived from survey data
- Metrics
 - mu mu_true vs z (stacked over 100 realizations)
 - Coverage tests (FIM^-1 vs. empirical covmat)
- Challenges
 - Mostly on EDRIS

- Primary Goal :
 - Validate propagation of calibration systematics
 - Validate non-Ia rejection in NaCl training
 - Assess importance of variable filtres (side DC-3)
- Features
 - Same as DC2, with calibration noise (need realistic estimate of calibration covmat by then), and non-Ia light curves.
 - Variation with variable filters (at generation)
- Metrics
 - mu mu_true vs z (stacked over 100 realizations)
 - Coverage tests (FIM^-1 vs. empirical covmat)
- Challenges
 - Mostly on NaCl

pre-DC-4 (color scatter)

- Primary Goal :
 - Validate a method to account for the color scatter, even if only 2 bands available.
- Features
 - Same as DC3, with additional color scatter
- Metrics
 - mu mu_true vs z (stacked over 100 realizations)
 - Coverage tests (FIM^-1 vs. empirical covmat)
- Challenges
 - Mostly on NaCl probably a 2-color model
 - Maybe on EDRIS : how does the estimator behave if color uncertainties too large ?

pre-DC-4 (x1 / broken alpha)

- Primary Goal :
 - Integrate x1 / broken alpha standardization into EDRIS
- Features
 - Same as DC4, with broken alpha
- Metrics
 - mu mu_true vs z (stacked over 100 realizations)
 - Coverage tests (FIM^-1 vs. empirical covmat)
- Challenges
 - Mostly on EDRIS

- Primary Goal :
 - Integrate astrophysical systematics into generation
 - Pop drift / dust
- Features
 - Same as DC4, with more complex dag in SN generation
- Metrics
 - mu mu_true vs z (stacked over 100 realizations)
 - Coverage tests (FIM^-1 vs. empirical covmat)
- Challenges
 - NaCl and EDRIS

Organization

- Processing of mocks will be automated
 - On the CC-IN2P3 farm
 - Mathieu is preparing a standard pipeline based on georges
- Convener for each DC, who
 - Validates the generation
 - Drives the analysis
 - Editor of the DC analysis note (mock description + DC validation analysis)
- Conveners
 - DC 1 : Mahmoud
 - DC 2 : Dylan ?
 - DC 3 and sqq : TBD