
Workflow management system

Valentin Pestel
LPC Caen Bootcamp - 06/11/2024

1



Why a workflow management system

2

To achieve your goal, you need complexe workflows:
● Getting the data, pre-processing, extracting information, all that for each runs, then merging
● You can use bash script, but…

In the ideal world, you’d like your worfklow:
● Clear and understandable 

○ everything is explicit, I understand and can explain what happen in which order
● Flexible

○ easy re-usability of already existing steps
● Performant and scalable

○ parallelize task that can be, offer solution to monitor the resources needed
● Portable and reproducible

○ Easy to port on another system, easy to reproduce by somebody else

Very smart people have put effort in that, and they found solutions:



Snakemake

3

The Snakemake workflow management system is a tool to create reproducible and scalable data 
analyses. Workflows are described via a human readable, Python based language. They can be 
seamlessly scaled to server, cluster, grid and cloud environments, without the need to modify the 
workflow definition. Finally, Snakemake workflows can entail a description of required software, 
which will be automatically deployed to any execution environment.

From Snakemake documention

To walk you through the key features, let’s go through a small set of examples:
● Available here: https://gitlab.in2p3.fr/lpc-dev/snakemake-examples/snakemake_101/

https://snakemake.readthedocs.io/en/stable/
https://gitlab.in2p3.fr/lpc-dev/snakemake-examples/snakemake_101/


Level 01: my first workflow

4

Per default, snakemake execute the first rule of the workflow. 
Let’s start with a dry-run (-n)

● snakemake -n

And now executing it:
● snakemake 

The work directory can be set with -d:
● snakemake -d my_workdir



First, let’s take a look at the Directed Acyclic Graph (DAG):
● snakemake -d workdir --dag | dot -Tpdf > dag.pdf

● Try out --rulegraph and --filegraph as well

Now let’s play with the number of core (-c or --cores):
● snakemake -d workdir -c 4

Now let’s play a bit with rerunning options
● snakemake -d my_workdir -n

● echo "test" >> workdir/generated_data/data_C_1.bin

● snakemake -d my_workdir -n

Level 02: DAG and wildcards

5



Level 03: config files

6

Ok, now we have a config file, let’s run with it:
● snakemake -d workdir --configfile config.yaml

Try modifying it and re-running 



Level 04: providing scripts

Functionally, the workflow is the same than before
● snakemake -d workdir --configfile config.yaml

But now the script used for scripts/generate_data.sh is “tracked”:
● snakemake -d workdir --configfile config.yaml -n

● echo “echo DONE” > scripts/generate_data.sh
● snakemake -d workdir --configfile config.yaml -n

7



Functionally, the workflow is the same than before, again
● snakemake -d workdir --configfile config.yaml

There is also a global way of monitoring ressources, through the report:
● snakemake -d workdir --configfile config.yaml --report report.html

Level 05: log and performances

8



Let’s make histograms

9

But first… let’s add dependencies I forgot:
● micromamba install docopt boost-histogram

Good, let’s produce a new environment spec file:
● micromamba env export --from-history > my_env.yaml

Now let’s take a look to examples:
● https://gitlab.in2p3.fr/lpc-dev/python-examples/root_tree_histogrammer
● 2 solutions provided, using ROOT through pyROOT, or full python uproot and 

boost-histograms
○ Not really one better than the other, depends on context/person

https://gitlab.in2p3.fr/lpc-dev/python-examples/root_tree_histogrammer


● Create the histogramming script from example

● Create the Snakefile that runs analysis and the histogram script for a run

● Generate a rule that trigger analysis for every runs and merge the histograms together
○ Tips, look at ROOT command line tool hadd

Now, your turn to build a workflow

10



But Snakemake is vast…

11

And contains solution to problem you haven’t met yet:
● File flags, like temp, which can be applied on an output to have it deleted as soon as possible
● Possibility to run in a temporary directory, if e.g. the code produce a lot of temporary file

Can submit jobs to a cluster by itself:
● cluster interface that can be defined with a profile file

Snakemake can manage rule-wise environment:
● Not relevant here, but can be when some steps requires

a particular environment


