

Precise measurement of the W boson mass with the CMS detector at the CERN LHC

Kenneth Long for the CMS Collaboration

Kenneth Long

- Masses, couplings are experimental inputs to the SM
	- But relationships between parameters are exactly predicted
	- Direct measurements over-constrain the SM

Introduction and motivation

- Most precise measurement of W boson mass from CDF, $m_W = 80,433.5 \pm 9.4$ MeV, in strong tension with expectation
	- And with other experiments... new result needed!

This work

-
- -
- -

Directly reconstructing the W boson

- Direct reconstruction of W possible with hadronic decays
	- Precise measurement at LEP using ee→WW→qqqq (or qqℓν) events
	- When the full decay is measured, little dependence on production details
- At hadron colliders
	- Exact initial conditions are not known (Parton distribution functions)
	- Background/calibration of jet momentum significantly more complex
	- ➡ Only lepton+neutrino decay is practical

vs.

Kenneth Long Mass [GeV] <u><https://cds.cern.ch/record/2865845></u> <u> 4</u>

Total weight

Overall length

Magnetic field

Overall diameter : 15.0 m

CMS DETECTOR STEEL RETURN YOKE

 $: 28.7 m$

 $:3.8T$

Kenneth Long

: 14,000 tonnes

SILICON TRACKERS

12,500 tonnes

Pixel (100x150 μ m) ~1m² ~66M channels Microstrips (80x180 μ m) ~200m²~9.6M channels

CRYSTAL ELECTROMAGNETIC **CALORIMETER (ECAL)** SUPERCONDUCTING SOLENOID Niobium titanium coil carrying \sim 18,000A

~76,000 scintillating PbWO₄ crystals

MUON CHAMBERS

HADRON CALORIMETER (HCAL)

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

Brass + Plastic scintillator \sim 7,000 channels

PRESHOWER Silicon strips \sim 16m² \sim 137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres \sim 2,000 Channels

$$
\vec{r} = r(\phi, \eta, z)
$$

Particle reconstruction with the CMS detector

Kenneth Long **6 Fermeth Long Remeth Long**

- Multiple pp interactions in one LHC bunch crossing - Critical to the LHC push to high luminosity, but not "for free" - "Is pileup really such a big deal?" — Anonymous theory colleague
	- Most measurements: it's worth the hit
	- Precision measurements: it's a huge challenge!
- More stuff in the detector \Rightarrow more chances for confusion (e.g., tracks built from wrong hits), higher chance to mis-measure
	- Balancing act between lumi. and performance
	- **Dedicated low-pileup runs** offer unique opportunities

Pileup

10

Kenneth Long **8 <https://cds.cern.ch/record/2909335> https://cds.cern.ch/record/2909335**

Measuring W AV at CMS

Very precise μ reconstruction

ν not directly reconstructed

Measuring mw at hadron colliders

- Rely on observable(s) sensitive to m_W built from measurable objects - Requires subpercent-level control of theoretical and exp. inputs

$$
m_{\text{T}}^{\text{W}} = \sqrt{2\,p_{\text{T}}^{\mu}\,p_{\text{T}}^{\text{miss}}\,(1-\cos\Delta\phi_{\ell\nu})}
$$

- Jakobian peak at mw
- Small dependence on p_TW
- Precise prmiss very difficult at LHC

-
-
-
-

33%

W and Z boson production at the LHC

- Final state is not fully reconstructed \Rightarrow measurement is highly sensitive to W (Z) production - Many similarities between W and Z, but also important differences (e.g., quark flavours)

- Non-zero p_T ^V due to gluon radiation from colliding quarks
	- Cannot be measured with high precision in LHC conditions
	- Subpercent-level precision in predictions immensely challenging
		- pQCD accurate at high p_TV
		- Resum soft gluons for low/intermediate region

- Non-perturbative motion of quarks important at low pTV

- Polarisation impacts kinematics of leptons from V decay

- Largely determined by PDFs

- Electroweak corrections small, but relevant impact on V and ℓ

- -
	-
	-
	-
	- determined by PDF \implies sensitivity to PDF from Π^{μ}
-

Validation with mz measurements

Crucial tool to validate mw extraction

Kenneth Long

- Select Z events
- Discard one lepton (add to p_Tmiss)
- Measure mz with single-lepton kinematics
- Cross-check with direct measurement of mz (and mz world average)
- Selection maximally consistent with W analysis
	- Take ℓ + (ℓ -) in even (odd) events
	- Reject event if selected lepton is not the object that triggered event

Statistical analysis

- Results from binned maximum likelihood fits to distributions sensitive to parameter-of-interest (mw or mz)
	- **Using [tensorflow-based](https://github.com/bendavid/HiggsAnalysis-CombinedLimit/blob/tensorflowfit/scripts/combinetf.py)** implementation of binned maximum likelihood fit - Avoid numerical instabilities due to fit complexities
- $O(3k)$ template bins in m_w fit and \sim 4000 nuisance parameters
- m_W (m_Z) uncertainty \pm 100 MeV shift computed in simulation and propagated via event weights
	- Unconstrained in fit
	- Extrapolation within range using log normal shape (validated to within $<$ 0.1 MeV)
	- Consistent with typical χ2 minimization
- Measurement performed "blind"
	- Likelihood fit with mw only performed on data in final steps
	- mz and mw values hidden, "unblinded" in sequence after finalising all inputs

Measurement sequencing and challenges

\rightarrow The m_w measurement is the culmination of an extensive program

- primarily heavy flavour decays in jets mis-ID'd as leptons)

Muon reconstruction efficiency

- First step of analysis is reconstructing muons very precisely

- *in situ* measurement of reconstruction rate from Z_{→μμ} sample (tag-and-probe)

- ϵ binned very finely in (p_TH, n^H) and divided by into steps:
	- tracking, track+muon system match, ID, trigger, isolation
- $-$ Smoothed in p_T ^{μ} to reduce stat. fluctuations
- ~2400 nuisance parameters in final signal extraction \rightarrow 3.0 MeV unc. in mw
- NB: for loss of events before the trigger, or differences between W and Z, this technique will fail to capture effects
	- Account for W/Z recoil differences
	- Vertexing selection modified for W/Z consistency
	- Trigger "pre-firing" estimated independently

passing probes passing probes + failling probes

Muon momentum calibration: overview

- Momentum measured from track curvature
	- Up to ~17 hits per track: single-hit resolution of 9-50 µm
	- δ p[{] ~ 10⁻⁴ \Rightarrow Sagitta ~ 6 mm, δ S ~ 0.6 µm
	- Significant material interactions
- Absolute scale of curvature \Longleftrightarrow momentum correspondence set by known resonance
	- J/ ψ or **Y** (use \overline{Z} for validation)
	- ➡Requires extrapolation across momentum range

 $k_{corr} = Ak + qM + q$ $\delta k/k \approx A + qM/k - ek$

Muon momentum calibration: procedure

\blacktriangleright Need robust parameterisation extrapolation across p \intercal

17

- $-k = 1/pT$ (curvature)
- A: magnetic field correction
- M: alignment correction
- e: energy loss correction (e.g., material budget)
- Multi-step procedure
	- Improved, custom refit of track to muon hits to remove bias
	- Apply module-by-module corrections obtained from track refit
	- Derive parameterised corrections (binned in ημ) from fit to J/ψ resonance
	- ➡Validate J/ψ-based calibration with ϒ(1S) and Z
- Corrections for muon momentum resolution derived from binned (in ημ) fits to Z events
	- Parameterised to account for multiple scattering (a), hit resolution (c), and correlation terms (b,d)

$$
\left(\frac{\sigma_{p_T}}{p_T}\right)^2 = a^2 + c^2 \cdot p_T^2 + \frac{b^2}{1 + \frac{d^2}{p_T^2}}
$$

-
- -
-
- ➡Extract and apply per-module parameter corrections

Physics-model corrections from resonant mass fits

- Parameter extraction procedure

1. Fit J/ψ mass in a binned 4D space of $(p_T \mu^+, p_T \mu^-, p_{\mu^+}, p_{\mu^-})$ 2. Using χ² minimization, extract η-binned calibration parameters per muon 3.Closure test: perform same procedure on Y(1S) and Z to assess consistency

 $\delta k/k \approx A +$

Left: example fit to J/ψ in central η bin

Right: Extracted parameters per η bin, (on top of module-level corrs.)

$$
+ qM/k - ek
$$

Calibration uncertainty and consistency between J/ψ, Y, and Z

- Closure tests: apply mass-fit procedure to Y(1S) and Z

1. Correct by binned (A, e, M) parameters from J/ψ

2. Fit for residual correction to parameters

 K enneth Long **CDF: Combination of J/ψ, Υ, and Z (3 MeV unc.)** $\frac{2}{3}$ $\frac{3}{4}$ $\frac{20}{9}$ $\frac{20}{9}$ ATLAS: calibration on Z (~7 MeV unc.)

- Stat. unc. in parameters from J/ψ used as basis for systematic unc.
	- Scaled up by 2.1 for full coverage
	- Confirmed impact in analysis is within unc.

■Uncertainty in mw 4.8 MeV

- Validation of experimental techniques by extracting mz - Binned likelihood fit to $m_{\mu\mu}$ in bins of signed $n\mu$ of most forward muon

- Not (yet) an independent measurement of mz
- Stability of result (calibration) validated across ημ

Kenneth Long

\bigstar Extracting mz from fit to m_{uu}

Recoil calibration

- p_T ^{miss} enters the analysis via the signal ($m_T > 40$ GeV)

- DeepMET gives improved resolution, better signal vs. background
- Recoil calibrations from dimuon data improve modelling of p_T ^{miss} in MC
	- Parameterization of recoil templates in bins of boson p τ
	- Applied to Z (validation) and W MC using the inverse CDF method

Theoretical modeling: PDF

PDF is a significant modeling uncertainty

- Modern PDF sets (MSHT20, NNPDF4.0, CT18 +…) in MiNNLO simulation as event weights
- PDF uncertainties from the experimental data fitted+tolerances
	- Well defined statistical treatment, but…
	- Sets with different parameterisations+slightly different data, are not necessarily covered by uncertainties of others
- No PDFs include theory unc. (approx. in special MSHT20, NNPDF)

- Studied the impact of 8 modern PDF sets in our analysis
	- Compare consistency of sets with bias tests: treat one as MC prediction and another as pseudo data
	- Scaling factors for each PDF set uncertainty based on bias studies
	- Results for mw with derived scaling and unscaled
- Select CT18Z as nominal set because of coverage of other sets and consistency with our data

 \rightarrow 4.4 MeV in mw

Theoretical modeling: PDF uncertainty

p_T^V modeling and uncertainties: overview

- Huge sample with with full detector simulation (4 B events) from MiNNLO_{PS}+Pythia+Photos++ - Low-p_TV dominated by non-perturbative effects, radiation of soft gluons (modelled by Pythia) - Improved accuracy from high-order calculation in resummation theory - Apply granular, high-stat. 2D binned corrections to MiNNLO from SCETIib+DYTurbo - Do not derive corrections for simulation from the Z boson \blacktriangleright Rely on accurate predictions $+$ robust model of uncertainties, Z boson only as testing ground 16.8 fb⁻¹ (13 TeV) 16.8 fb⁻¹ (13 TeV) Events/GeV **CMS** $Z/\gamma^* \rightarrow \mu \mu/\tau \tau$ Data Events/bin 61 $Z/\gamma^* \rightarrow \mu \mu/\tau \tau$ **CMS** Data **MINNLO_{PS}** Preliminary--Other Preliminary---**MINNLO_{PS}** Other $3¹$ $2\frac{E}{1}$ MiNNLO_{PS}+Pythia Uncorrected Data/Pred Pred 1.0 Data/ CS-Nonpert. Fixed-order+matchinc **CS-Nonpert** Fixed-order+matching 0.9 Resum. TNP Nonpert. Resum. TNP Nonpert. 10 30 50 35 40 45 30 50 55 60 $p_T^{\mu\mu}$ (GeV)

Kenneth Long CDF: Tune Resbos+reduce unc. from data comparisons (2 MeV unc.) $\frac{25}{25}$ ATLAS: tune Pythia to p_T^2 (5 MeV unc.)

$$
\tilde{\sigma}^{\text{np}}(Y) = \left[1 + \overline{\Lambda}^{(2)}(Y) b_T^2\right]^2 \exp(-2X)
$$

$$
\overline{\Lambda}^{(2)}(Y) = \overline{\Lambda}^{(2)} + Y^2 \Delta \overline{\Lambda}^{(2)}.
$$

- PDF assumes parton momentum is entirely aligned with the proton motion - Residual motion in the proton: low energy \Rightarrow nonperturbative (NP)
- Use phenomenological NP model in SCETlib inspired by lattice QCD
	- Params untuned, loosely constrained, extracted separately for W and Z
	- Constrained by data: $~1.5$ MeV unc. in mw

- Collins–Soper (CS) kernel universal (correlated for W and Z) - Others (Gaussian intrinsic momentum) not correlated

Perturbative uncertainties

- "Theory nuisance parameters" calculated from SCETIib at N³LL and propagated through analysis

-
- Parameterize elements of resummation series, uncertainties directly represent unknown terms
- Meaningful shape variation (critical!) and meaningful constraints from data
	- $-$ Unc. in mw \sim 0.5 MeV

- Structure of resummation is known to all orders, many corrections are (unknown) numerical constants

Sufficiency of the theoretical model

- General strategy: do not tune parameters of the theoretical models
	- Robust paramterization,uncertainties + data corrections extracted from maximum likelihood fit
- Direct maximum likelihood fit to ($y^{\mu\mu}$, $p_T^{\mu\mu}$) is first test of sufficiency of this approach
	- P-value of 16%
- \rightarrow Total unc. in mw 2.0 MeV

W/Z helicity states and impact on lepton kinematics

- For a given helicity state, relationship between $V = W$, Z and decaying leptons is known analytically (up to small higher-order QED corrections)

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^2 \mathrm{d}m \mathrm{d}y \mathrm{d}\cos\theta^* \mathrm{d}\phi^*} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma_{\mathrm{UL}}}{\mathrm{d}p_{\mathrm{T}}^2 \mathrm{d}m \mathrm{d}y}
$$

- Modifications of A_i change relationship between p_TV and p_T^µ
	- Estimated at NNLO with MiNNLO, verified consistency with fixed-order NNLO
	- Uncertainty from scale variations, decorrelated across 10 bins of p_T ^V ➡3.3 MeV unc. in mW
- Exploit this relationship for alternative theory-reduced measurement (helicity cross-section fit)
	- Attempt to measure (yv, $p_T V$) templates by dividing (nv, $p_T \mu$) templates by Ai
	- $-$ ~600 parameters, binned in (yv, p τ V) per A_i, loose constrained around theory

Kenneth Long ➡Larger stat. uncertainty but reduced theory dependence

- Uncertainty in συμ (σ4) of 50% (100%), others constrained by envelope of theory unc (e.g., different PDFs)
	-

-
- Main impact of EW corrections captured by photos in nominal simulation - Includes QED @leading-log γ→ee/μμ pair production and matrix element corrections (MEC) ~NLO QED
- Impact of higher-order EW evaluated by comparisons of full NLO EW calculation to MiNNLO+photos prediction. Factorized
	- $-$ FSR \sim 0.3 MeV in mw
		- Horace QED FSR
		- Photos++ MEC off
	- $-$ ISR $<$ 0.1 MeV
		- Switching on/off QED ISR in pythia
	- $-$ Virtual \sim 1.9 MeV
		- Z: Powheg NLO+HO EW
		- W: ReneSANCe NLO+HO EW

Kenneth Long

Higher-order EW uncertainties

mum

ISR

ATLAS: Pythia vs. Photos (6 MeV unc.) CDF: 2.7 MeV unc. (Horace)

- W-like measurement of mz using approach developed for mw
	- Split into two data samples to avoid need for evaluating correlations within events
	- Both results highly consistent with PDG (LEP)

$$
m_Z - m_Z^{\rm PDG} = -6 \pm 14 \text{MeV}
$$

\star Extracting mz from fit to (ημ, pτμ)

13.5

- Propagate postfit pulls and constraints of theory uncertainties to generator-level distributions
	- In situ corrections from data
- Compare
	- $-$ Unfolded p $T^{\mu\mu}$ data
	- Direct fit to pTHH
	- W-like (n^{μ}, p_T^{μ}) fit
	- Strong and consistent constraints between direct fit to and p_T ^{μμ} to p_T μ
- (ημ, pτμ) distribution able to simultaneously correct p_T^{μμ} and extract m_Z without bias
- \rightarrow Justifies performing mw measurement without corrections from p_T ^{μμ}

Validation of the theoretical model

- Data driven estimate with "extended ABCD method"
	- -6 regions of isolation/ m_T to correct for correlations
	- Smoothing to reduce stat. fluctuations
	- 3.2 MeV unc. in mw
- Full uncertainties of prompt subtraction propagated through analysis
	- Dedicated efficiency measurement for iso-failing muons
	- Prompt uncertainty in MC propagated through non-signal regions

 $D=C$.

fakerate

- Primarily heavy flavour decays to leptons in jets ➡Validated in secondary vertex control region

Nonprompt background estimation

\star Extracting m_w from fit to (ημ, pτμ)

- Total uncertainty of 9.9 MeV
	- Muon momentum scale and PDF dominant

$m_W = 80360.2 \pm 9.9$ MeV

LEP combination Phys. Rep. 532 (2013) 119 D₀ PRL 108 (2012) 151804 CDF Science 376 (2022) 6589 LHCb JHEP 01 (2022) 036 **ATLAS** arxiv:2403.15085, subm. to EPJC **CMS This Work**

Helicity cross section fit result

- Helicity cross section fit result very compatible with the nominal
	- Larger uncertainties by design
- Result istable wrt looser or tighter initial constraints on the helicity cross sections

$m_W = 80360.8 \pm 15.2$ MeV

- Compatibility tested when allowing different m_W parameters per η/charge regions
- Mass difference between
	- η < 0 and η > 0: 5.8 \pm 12.4 MeV
	- Barrel vs. endcap: 15.3 ± 14.7 MeV
	- W+ vs. W- 57± 30 MeV
- Charge difference studied extensively, and no clear issues found.
	- m_{W^+} and m_{W^-} are highly anti-correlated (-40%)
	- Only 2% correlation betwee mw+ and mw-
- ➡Even if some small charge-dependent correction is underestimated, impact in mw is very small

Experimental validation

CMS Preliminary Measurement Calib. unc. Stat. unc. x^2 /ndf = 46.8/47 $p = 48%$ 9.
8. Inclusive -300 -200 200 -100 100 0

- Tested effect of varying treatment of theoretical uncertainties
	- Partial high-order resummation + theory nuisance parameters
	- Explicit reweighing of p_T ^W by measured p_T ^Z correction
	- $-$ Combined $m_W + p_T$ ^{μμ} fit

Impact of modeling and validation

➡All results consistent with nominal approach

Kenneth Long $\frac{38}{2}$ Comparison of generator-level postfit distributions from nominal and combined $m_W + p_T$ ^{μμ} fits

Results with alternative PDF sets

- Unc. scaling reduces spread of results, brings all within nominal uncertainty

Comparison with other measurements

- Only "global" uncertainty breakdown ([arxiv:2307.04007\)](https://arxiv.org/abs/2307.04007) comparable to ATLAS

Unc. [MeV] Total Stat. Syst. PDF A_i Backg. EW $e \mu u$ T Lumi Γ_W PS												
$p_{\rm T}^{\ell}$					16.2 11.1 11.8 4.9 3.5 1.7 5.6 5.9 5.4 0.9 1.1 0.1 1.5							
$m_{\rm T}$					$\begin{array}{ rrrrrrr } 24.4 & 11.4 & 21.6 & 11.7 & 4.7 & 4.1 & 4.9 & 6.7 & 6.0 & 11.4 & 2.5 & 0.2 & 7.0 \end{array}$							
Combined 15.9 9.8 12.5 5.7 3.7 2.0 5.4 6.0 5.4 2.3 1.3 0.1 2.3												

CDF

Compared to ATLAS

Kenneth Long ➡Much larger data set is the CMS saving grace

- Leverage larger data set while managing comparable exp. uncertainties in high PU
- Stronger constraints on PDFs
- Reduced impact of other theory
	- ATLAS EW unc. due to use of older Photos++
- Total calibration + muon eff. only 10% better
	- but Z-independent, model-based **_**
- CDF has advantages from pp, lower E, PU
	- PDFs better understood (valence quarks)
	- Less hadronic activity (simpler recoil calibration)
	- Low tracking material aids lepton calibration

ATLAS

The CMS precision measurement program and the electroweak fit

Kenneth Long

Summary and conclusions

- The first m_W measurement at CMS is a long-awaited milestone for precision physics at the LHC Documented in [CMS-PAS-SMP-23-002](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-002/), submission to journal very shortly

42

-
- Most precise measurement at LHC
- In tension with CDF measurement

- The CMS detector and the LHC are precision instruments, far exceeding expectations

'The standard model is not dead': ultra-precise particle measurement thrills physicists

culation of the *W* boson's mass agrees with theory, contradicting a previous anomaly that had raised the possibility of new physics.

Kenneth Long

Backup

Looking forward

- In the near (and not so near) future, hadron colliders are our main probe of mw
	- Can envision huge theoretical progress in next 20 years
	- Enormous data set will come with increased experimental challenges due to high-pileup and detector aging
	- Mitigate with special runs, detector upgrades, reconstruction advancements
- Future e+e- collider provides more direct, less theory-dependent measurement from threshold scans
	- FCC-ee anticipates < 1 MeV unc. in mw
- Experimental+theory hadron collider communities must meet the challenge of providing results that stand the test of time - Publish/maintain analyses that can be reinterpreted with improved theory

utdown/Technical stop

rotons physics

Commissioning with beam

ware commissioning/magnet training

Kenneth Long 44 <https://doi.org/10.1140/epjst/e2019-900045-4>

mW measurements: current landscape pt londecono

- [LEP combination](https://www.sciencedirect.com/science/article/abs/pii/S0370157313002706?via=ihub) (2013): 33 MeV unc.
- Semi-leptonic and fully hadronic WW decays - Tevatron (proton-antiproton):
	- wrt LHC: Smaller W production uncertainty, better estimation of neutrino momentum
	- <u>D0 (2013)</u>: (23 MeV unc.)
	- [CDF \(2022\)](https://www.science.org/doi/10.1126/science.abk1781): (9.4 MeV unc.)
		- mτ+pτ^ℓ (e+μ); very precise ℓ calibration; 4.2 M events
- [LHCb \(2021\)](https://arxiv.org/abs/2109.01113) (32 MeV unc.)
	- 13 TeV, pτ^μ channel only; 2.4 M events
- ATLAS (15.9 MeV unc.)
	- [Published 2017,](http://www.apple.com/uk) [updated earlier this year](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-004)
	- -7 TeV data, $m_T+p_T^{\ell}$ (e+µ, 3 n categories); 14 M events
	- Driven by p_T ^{ℓ} channel (~90%)
- CMS (9.9 MeV unc.)
	- 13 TeV data, p_T^{ℓ} (μ only, 48 η categories); 100 M events

Kenneth Long

Overview of m_w Measurements

CDF uncertainty breakdown

Comparison of measurements (previous ATLAS)

Comparison of uncertainties (previous ATLAS)

Theory nuisance parameters

- Level 1: At given order vary parameters around their known values $c_0 + \alpha_s(\mu)[c_1 + \alpha_s(\mu) c_2 + \cdots] \rightarrow c_0 + \alpha_s(\mu)(c_1 + \tilde{\theta}_1)$
	- Simpler but perhaps less robust
- Level 2: Implement the full next order in terms of unknown parameters $c_0 + \alpha_s(\mu)[c_1 + \alpha_s(\mu) c_2 + \cdots] \rightarrow c_0 + \alpha_s(\mu)[c_1 + \alpha_s(\mu) \theta_2]$
	- More involved, but also more robust, allowing for maximal precision

Heavy quark masses

- Impact of quark mass thresholds estimated by varying quark mass thresholds in PDF (dedicated MSHT20 PDF sets)
	- Impact ~0.7 MeV

CMS W-like Z measurement

- Measurement of the Z mass in a "W-like" way: add one lepton to the p T^{miss}
- First effort towards a W mass measurement
- Focued on calibration of muon momentum scale and recoil

- In principle, a demonstration that this is possible at CMS
- effort stopped here

- Limited to central muons

- Combination of technical issues (MC production) and sociological ones (loss of person power) meant the

Electrons vs Muons

- Significantly larger statistical+experimental uncertainties for electrons already in W helicity measurement
- Energy calibration is also more challenging
- Will be difficult to be competitive with muons for mW measurements

Phys. Rev. D 102 (2020) 092012

Electron Energy scale calibration in CDF and ATLAS

-
- CDF quotes systematic uncertainties on electron energy scale < 1e-4 Achieved by transporting ultra high precision tracking calibration from muons to electron tracks and then using E/p
- CDF has \leq 0.2 radiation lengths of material in the tracking volume however…
- Quoted ATLAS electron energy scale uncertainties are approaching 1e-4, but rely maximally on Z->ee for calibration

recoil distribution has some sensitivity to W pT distribution, appears to disfavour more advanced calculations of W/Z pT ratio Measurement relies on Pythia model tuned to Z pT, with residual uncertainties for W->Z extrapolation

ATLAS: Production Modeling **EUT. Phys. J. C 78 (2018) TIU** Measured hadronic

Eur. Phys. J. C 78 (2018) 110

$m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}}$ MeV. Unique forward phase space

- Detector design limits measurement to muon transverse momentum, but excellent calibration possible with quarkonia
-

JHEP 01 (2022) 036

LHCb Combination prospects

• Forward phase space with respect to ATLAS and CMS leads to an anticorrelation of PDF uncertainties PDF uncertainties can be further reduced in combination

JHEP 01 (2022) 036

D0

- Measurement with $4.3 + 1.0$ /fb in electron channel
- Electron energy scale, hadronic recoil, theory model calibrated/tuned with Z->ee

$M_W = 80.375 \pm 0.023$ GeV.

PDF comparisons in mw combination

a total χ^2 at least as high as that observed is labelled $p(\chi^2, n)$.

Table 6: χ^2 per degree of freedom for the Tevatron Z-rapidity and W- and l-asymmetry measurements at \sqrt{s} = 1.96 TeV, and the LHC Z-rapidity and W lepton-rapidity measurements at $\sqrt{s} = 7$ TeV. The total χ^2 is the sum of those quoted for individual measurements along with a separate contribution for correlated uncertainties, where the latter is extracted using a nuisance parameter representation of the χ^2 [47]. The CT14 and CT18 PDF uncertainties correspond to 68% coverage, obtained by rescaling the eigenvectors by a factor of $1/1.645$. The probability of obtaining

