

Projet ILC des benchmarks de physique à la R&D détecteur

Institut National de Physique Nucléaire et de Physique des Particules Djamel BOUMEDIENE ILC – Collaboration CALICE

Introduction

IIL

La Physique des collisions e⁺e⁻

- ∽ Les mesures Benchmarks
- ∽ Mesure du couplage trilinéaire de Higgs
- ∽ Influence du contexte expérimental sur la mesure
- Algorithmes de *particle flow*
- Les concepts de détecteur :
 - ∽ Pourquoi un calorimètre électromagnétique au silicium-tungstène ?
 - ∽ Etude du prototype de calorimètre Si-W dans CALICE
- La synergie avec le LHC
- Conclusion et perspectives

Introduction

3

Séminaire du CPPM, 11/02/2008

Rappels sur le secteur de Higgs dans le MS

Le secteur de Higgs est un doublet de champs scalaires :

Sur les 4 degrés de liberté initiaux, 3 sont absorbés par les bosons W[±], Z. Le quatrième correspond à une particule physique : le Higgs

■ Couplage Yukawa doublet scalaire-fermions → masse des fermions

Les couplages du boson de Higgs aux fermions et aux bosons de jauge (ainsi que l'autocouplage) sont proportionnels aux masses

Potentiel de Higgs

Observables :
•
$$g_{ffH} = m_f / v$$

• $g_{vvH} = 2 M_V^2 / v$
• $\lambda_{hhh} = 3/\sqrt{2} m_h^2 / v^2$

Le MS peut être également testé à l'échelle des corrections radiatives grâce aux mesures de précision de ses paramètres

Observables :

mw

IIL

Scénarios à envisager

Le Model Standard Minimal est actuellement capable de décrire les mesures de précision LEP/Tevatron.

Si le Higgs est observé : A-t-il le profil prédit par le MS ?

En masse, temps de vie, Br, couplage aux fermions, auto-couplage, section efficace, spin.

Est-ce un Higgs supersymétrique?

ILC poussera la précision des mesures pour contraindre le modèle au niveau quantique afin de répondre à cette question

On doit pouvoir observer l'inattendu ⇒ réaliser des mesures indépendantes des modèles

Physique des collisions e⁺e⁻ à haute énergie

Séminaire du CPPM, 11/02/2008

Le collisionneur

– Collisions e⁺e⁻

116

- Dispersion du au beamstrahlung
 - 2,4 3,7%
- Polarisation
 - e⁻80% e⁺60%

- Collisions ajustables en énergie

- 500 GeV à 1 TeV
- Option GigaZ
- Luminosité
 - 3 à 5 ab-1
 - typiquement 500fb⁻¹ / année
- Option : collisions γγ, eγ, e⁻e⁻
- Machine lente ⇒ pas d'empilement
- Pas de trigger

Propriétés des collisions e⁺e⁻

Séminaire du CPPM, 11/02/2008

Physique des collisions e⁺e⁻

- Etat initial contrôlé
- Bruits de fond contrôlés

 $Particules \ initiales \ {\ \ } \acute{e} lectrofaibles \ {\ \ } \Rightarrow contribution \ hadronique \ limit{\'e}$

Avantage des effets de seuil

- Choix du \sqrt{s} en fonction de la physique désirée
 - physique du Higgs @ seuil Zh
 - (~300GeV pour $\rm m_h$ ~ 120 GeV/c²)
- Mesures des masses :
 - m_t @ seuil t t

Benchmarks physiques

Nécessité de définir quelques mesures

- contraignantes, pour un choix de contexte expérimental (performances du détecteur ...)
- importantes du point de vu de la physique (élément de justification de l'ILC)
- robustes : les critères testés par les benchmarks doivent rester valides pour des scénarios non considérés

Trois classes de processus

- Secteur de Higgs
- SUSY

İİL

Mesures de précision dans le MS, indirectement sensibles à une nouvelle physique

10

ir	Process	Vertex	Track	ing	Cal	orimetry	F	wd	Very Fwd		Ι	ntegr	ation		Pol.
••••		σ_{IP}	$\delta p/p^2$	ε	δE	$\delta\theta,\delta\phi$	Trk	Cal	θ^{e}_{min}	δE_{jet}	M_{jj}	ℓ-Id	V^0 -Id	$Q_{jet/vtx}$	
IIU	$ee \rightarrow Zh \rightarrow \ell\ell X$		х									х			
	$ee \rightarrow Zh \rightarrow jjbb$	х	х	х			х				х	х			
	$ee \to Zh, h \to bb/cc/\tau\tau$	х		х							х	х			
	$ee \to Zh, h \to WW$	х		х		х				х	х	х			
	$ee \rightarrow Zh, \ h \rightarrow \mu\mu$	х	х									х			
	$ee \rightarrow Zh, \ h \rightarrow \gamma\gamma$				х	х		х							
	$ee \rightarrow Zh, h \rightarrow invisible$			х			х	х							
	$ee \rightarrow \nu \nu h$	х	х	х	х			х			х	х			
Physics Benchmarks for the	$ee \rightarrow tth$	x	x	х	х	х		х	x	x		х			
	$ee \rightarrow Zhh, \nu\nu hh$	х	х	х	Х	Х	х	х		х	х	х	х	х	х
	$ee \rightarrow WW$										х			х	
	$ee \rightarrow \nu\nu WW/ZZ$						х	х		Х	Х	х			
	$ee \to \tilde{e}_R \tilde{e}_R$ (Point 1)		х						х			х			х
M. Battaglia, T. Barklow, Y.	$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$	х	х						х						
Okada, S. Yamashita, P. Zerwas	$ee \rightarrow t_1 t_1$	Х	х							х	х		х		
	$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1 \text{ (Point 3)}$	х	х			х	х	х	х	х					
6 Mar 2006	$ee \rightarrow \chi_2^\circ \chi_3^\circ$ (Point 5)									х	х				
arXiv:hep-ex/060301v1	$ee \rightarrow HA \rightarrow 0000$	х	х								х	х			
	$ee \rightarrow \tau_1 \tau_1$ $\tilde{\tau}^0 \rightarrow \tilde{\tau} + F$			х											
	$\chi_1 \rightarrow \gamma + \mu$ $\chi^{\pm} \rightarrow \chi^0 + \pi^{\pm}$			v		х			v						
	$\chi_1 \to \chi_1 + \pi_{soft}$			л					л						
	$ee \rightarrow tt \rightarrow 6 \ jets$	х		x						х	х	х			
	$ee \rightarrow ff [e, \mu, \tau; o, c]$	х		x				х		х		х		х	x
	$ee \rightarrow \gamma G (ADD)$				х	х			х						х
	$ee \rightarrow KK \rightarrow jj$		л		_		v	v	v			л			
	$ee \rightarrow ee_{fwd}$ $ee \rightarrow Z\gamma$		x		x	v	л х	x	л						
	00 - <i>L</i>		л		л	л	л	^							

Séminaire du CPPM, 11/02/2008

Processus de production de Higgs

- a) Higgsstrahlung
 - $-\sigma en 1/s \Rightarrow$ dominant à basses énergies
- b) Fusion de W
 - $-\sigma en \log(s/m_{h^2}) \Rightarrow$ dominant à haute énergie
- c) Fusion de Z
 - Pénalisée par le rapport CC / CN
 - $-\sigma$ inférieure d'un ordre de grandeur à hvv
 - Dans le cas de collisions e-e-même section que pour tout e+e-

Nombre d'événements attendus

- À \sqrt{s} = 350 GeV $m_{\rm h}$ = 120 GeV, L = 500 fb^{-1} 80 000 Higgs attendus

Des mesures indépendantes des modèles

Cas de la mesure de la masse de recul du Higgs (recoil mass)

– Hypothèse

IIL

- Connaissance de m_Z, \sqrt{s}
- Conservation de l'énergie-impulsion
- Nécessite
 - Une identification pure du Z
 - Une bonne mesure cinématique du Z
 - \rightarrow Emplois du canal h*ll*
- Aucune mesure ne s'effectue sur les produits de désintégration du Higgs
- Précision : entre 40 et 80 Mev/c²

Avantage : Mesure indépendante de l'hypothèse d'une désintégration standard du Higgs

13

Mesure de la masse du top

Production de top au seuil (de 340GeV and a 350GeV)

− Mesure de m_t au seuil e⁺e⁻ → tt

IIL

- Mesure robuste (cf. mesure de m_W au seuil à LEP₂)
- Précision attendue pour L=100fb⁻¹ δm_t ~ 100 MeV/c²

Quelques précisions attendues en SUSY (mSUGRA)

- g_{HWW} en fonction de g_{Htt}
- Comparaison de la précision attendue aux écarts prédits dans le MSSM
 - $\delta m_o \approx 0.09 \text{ GeV}$
 - $\delta m1/2 \approx 0.1 \text{ GeV}$
 - $\delta A_0 \approx 1 \text{ GeV}$
 - $\delta \tan\beta \approx 0.02$

Séminaire du CPPM, 11/02/2008

Quelques précisions attendues

Paramètres	m _H	Lumi., √s	Précision		
m _H	120 GeV/c ²	500 fb ⁻¹ 350GeV	±40 MeV/c ²		
m _H	150 GeV/c ²	500 fb ⁻¹ 350GeV	± 70 MeV/c ²		
$\Gamma_{\rm H \rightarrow WW}$	120 GeV/c ²	500 fb ⁻¹ 350GeV	± 0,061		
Γ	160 GeV/c ²	500 fb ⁻¹ 500 GeV	± 0,134		
Spin	120 GeV/c ²	30 fb⁻¹ √s variable	Déterminé		
g _{Hww}	120 GeV/c ² 140	500 fb ⁻¹ 500 GeV	± 0,012 ± 0,020		
9 _{HZZ}	120 GeV/c ² 140	500 fb ⁻¹ 500 GeV	± 0,012 ± 0,013		
G _{Htt}	120 GeV/c ² 140	1000 fb ⁻¹ 800 GeV	± 0,030 ± 0,061		
G _{Hbb}	120 GeV/c ² 140	500 fb ⁻¹ 500 GeV	± 0,022 ± 0,022		
9 _{Hcc}	120 GeV/c ²	500 fb ⁻¹ 500 GeV	± 0,037		
G _{Htt}	120 GeV/c ²	500 fb ⁻¹ 500 GeV	± 0,033		

Séminaire du CPPM, 11/02/2008

Quelques précisions attendues

Paramètres	Lumi., √s	Précision
m _w	100 fb ⁻¹ variable	±6 MeV/c ²
m _{top}	100 fb ⁻¹ variable	±100 MeV/c ²

Ces mesures peuvent être effectuées sans hypothèse de modèle

Séminaire du CPPM, 11/02/2008

ΪŪ

Couplage trilinéaire dans le MS

 λ_{hhh} intervient dans les processus de double Higgsstrahlung: $e+e- \rightarrow Zhh$

- Constitue un test sévère du secteur de Higgs
- Mesure uniquement possible (\Leftrightarrow avec une précision < 30%) à l'ILC
- Faible section efficace (@ m_h = 120 GeV) 0.15 fb \Rightarrow nécessite une haute luminosité

 $\Delta \lambda_{\rm hhh} / \lambda_{\rm hhh} \sim 1.75 \ \Delta \sigma_{\rm hhz} / \sigma_{\rm hhz}$

Mesure du couplage trilinéaire de Higgs

Séminaire du CPPM, 11/02/2008

Reconstruction d'un état final hhZ

Signal : 3 canaux

– hhqq

IIL

- 6 jets
- $m_h \& m_Z$
- -hhvv
 - 4 jets
 - Energie manquante
 - m_h
- hhll
 - 4 jets
 - 2 leptons énergiques
 - $m_Z \& m_h$

Chaque événement est reconstruit en

- 6 jets
- 4 jets
- 2 jets
- Jet pairing basé sur la masse invariante de la paire de jets
 - Différentes associations pour tester différents états finals
 hhZ, hh(vv), ZZZ, ZZ, WWZ, ...
 - Pour chaque événement, calcul d'un χ^2
 - $\chi^2_{hhZ} = (m_{12} m_h)^2 / \sigma^2_h + (m_{34} m_h)^2 / \sigma^2_h + (m_{56} m_Z)^2 / \sigma^2_Z$
 - $\chi^2_{ZZ} = (m_{12} m_h)^2 / \sigma^2_Z + (m_{34} m_Z)^2 / \sigma^2_Z$

Séminaire du CPPM, 11/02/2008

Méthode de mesure

- Présélection séparant hhll, hhvv et hhqq
- **Utilisation de multivariables (NN)**

Inputs globaux :

Inputs de reconstruction:

- Energie visible
- Nombre de jets (y_{cut})

Sphéricité

- $\chi^2_{hhZ} \chi^2_{hh} \chi^2_{2-bosons} \chi^2_{3-bosons}$: Cohérence des masses reconstruites
- Étiquetage global des b

 λ_{hhh} est mesuré par la maximisation d'une fonction de vraisemblance 2D (NN output × btag)

La précision statistique attendue est évaluée avec des pseudo-expériences

Séminaire du CPPM, 11/02/2008

Simulation Monte Carlo

Pour obtenir un résultat réaliste, une luminosité supérieure à la luminosité attendue doit être générée

İİL

prohibitif pour une simulation complète

Monte Carlo paramétrique

Processes	σ(fb)	N attendus $(L = 500 \text{ fb}^{-1})$
hhZ	0,1528	76,4
Bruit de fond	699	332 167
tt	526,4	263 200
ZZZ	1,051	525
tbtb	0,7	350
ZZ	45,12	22 560
vvtt	0,141327	70
WWZ	35,3	17 650
Wtb	16,8	8 400
eeZZ	0,287	143
vvWW	3,627	1 813
evZW	10,094	5 047
ZZh	0,5	250
vvZZ	1,08257	541
ttZ	0,6975	349

Simulation paramétrique

Séminaire du CPPM, 11/02/2008

Chaîne d'analyse, du détecteur à la mesure

Séminaire du CPPM, 11/02/2008

ΪĿ

Simulation de différentes ∽ résolutions *particle flow* ∽ efficacités d'étiquetage de *b* ↓ Analyse réoptimisée pour chaque hypothèse

- Pour un *pflow* = $30\%/\sqrt{E_{jet}}$, une précision de 19% sur λ_{hhh} peut être atteinte
- Pflow à 30%/√E_{jet} → gain de 1/1.5 en luminosité (par rapport à 100%/√E)
 - Grande sensibilité à la pureté du b-tag

La reconstruction par algorithmes *particle flow*

Séminaire du CPPM, 11/02/2008

La résolution sur l'énergie des jets et le *particle flow*

- Nous avons considéré : $\sigma_{Ejet}/E_{jet} = 30\%/\sqrt{E_{jet}}$
- Un jet est typiquement constitué de :
 - 65% particules chargés \leftrightarrow détecteurs de traces
 - 25% photons \leftrightarrow calorimètres EM
 - 10% hadrons neutres \leftrightarrow calorimètres EM et hadroniques

IIL

Pourquoi 30%/ \sqrt{E} ?

Influe fortement sur la capacité à effectuer l'appariement des jets, à séparer les W des Z

example: $e^+e^- \rightarrow WWv\bar{v}$, $e^+e^- \rightarrow ZZv\bar{v}$ $\stackrel{\texttt{f}}{=} 120 \longrightarrow \texttt{f}_{\texttt{m}} = 0.60 \checkmark \texttt{F}_{\texttt{m}} \longrightarrow \texttt{f}_{\texttt{m}}$

Comparaison avec d'autres expériences

Séminaire du CPPM, 11/02/2008

L'étiquetage des leptons τ

 L'efficacité de l'étiquetage des τ est un bon test pour les algorithmes *particle flow*

IIL

- nécessite de reconstruire des π^o,
 $π^{\pm}$ et γ en amont
- important pour la physique : H violant CP, SUSY
- Canal benchmark retenu : $e^+e^- \rightarrow hZ \rightarrow h\tau + \tau^-$
- Exemple de l'impact de l'étiquetage des τ sur une mesure de précision : m_W dans ALEPH
 (e⁺e⁻ → W⁺W⁻ → qq τ ν)

Masse invariante du W après un τ id dédié

Séminaire du CPPM, 11/02/2008

Comment atteindre 30%/ \sqrt{E} ?

■ Reconstruire de façon optimale toutes les particules d'un événement ⇒ optimise la résolution sur E_{iet}

Matériaux du détecteur + segmentation + choix des algorithmes 🛀

- **La réduction du terme de confusion se fait**
 - en améliorant l'assignation traces-dépôts
 - en réduisant les doubles comptages
 - en effectuant une séparation efficace des dépôts
 - \Rightarrow algorithmes astucieux
 - ⇒ bonne résolution spatiale (granularité ⊕ faible rayon de Molière)

Motive l'option ECAL Si-W

31

Les concepts détecteurs à l'ILC Pourquoi l'option Si-W?

32

Séminaire du CPPM, 11/02/2008

Trois concepts de détecteurs

Séminaire du CPPM, 11/02/2008

İİĻ

Les collaborations horizontales

Ó

34

Séminaire du CPPM, 11/02/2008

ΪĿ

Pourquoi un calorimètre Si-W?

- Le silicium permet d'atteindre une granularité de 0.5x0.5cm² avec des épaisseurs réduites
- Le tungstène possède un faible rayon de Molière R_M (W) 9 mm

Séminaire du CPPM, 11/02/2008

ΪĹ

Technologie Si-W en service dès LEP I

- Dans ALEPH le (premier) luminomètre était un ECAL Si-W en forme de disques
- A fournit un test en conditions réelles

ΪĹ

Calorimétrie proposée par la collaboration CALICE

Collaboration de :

- 168 physiciens & ingénieurs
- 28 instituts
- 8 pays
- 3 continents
- Coordination de la R&D → vers un *proposal* et un module 0
- Les efforts de CALICE couvrent toute la chaîne, de la R&D à l'analyse de données en faisceau test :
 - Détecteur (prototype)
 - Acquisition
 - Software de reconstruction et format de données communs
 - Setup faisceau test
 - Caractérisation

Calorimétrie proposée par la collaboration CALICE

- **Calorimètre EM très compact (~19 cm de large)**
- Numérisation des mesures dans les calorimètres
- ECAL: 80 millions de canaux

Le calorimètre Si-W

Challenge pour l'électronique : épaisseur : 2.2 mm longueur : 1.5 m

Rayon de Molière attendu

W pur :	9 mm
W + structure:	~ 14 mm

Séminaire du CPPM, 11/02/2008

Prototype du calorimètre Si-W (SiCal) Calorim **CALICE ECAL Prototype** Structure 1.4 (1.4mm of W plates) • diodes de 1x1 cm² Structure 2.8 (2×1.4 mm of W plates) (objectif $0.5 \times 0.5 \text{ cm}^2$) **Detector slab** • 36 par wafer Structure 4.6 (3×1.4 mm of W plates) PCB Shielding **Front End** electronics zone

(Cfi / W) structure type H

Wafers Si with 6×6 pads (10×10 mm²)

ACTIVE ZONE

 $(18 \times 18 \text{ cm}^2)$

Séminaire du CPPM, 11/02/2008

Etude du prototype en faisceau test

 TestBeam sur ECAL, HCAL, Tail Catcher

Calorimeter for ILC

- 3 Campagnes à DESY et au CERN, de 2006 à 2007
- Campagne à venir au FNAL (mai et juillet 2008)

Faisceau (e⁻ ou π)

41

Séminaire du CPPM, 11/02/2008

24 M d'événements accumulés en 2006 (DESY + CERN)

- 30 M d'événements accumulés en 2007 (CERN)
- Energies de 1 GeV à 50 GeV
- Différents angles d'incidence
- e⁻ e⁺ π^{+/-} μ

CALICE - CERN test beam 2006

Séminaire du CPPM, 11/02/2008

Les points à investiguer en faisceau test

- Fonctionnement, stabilité, bruit, calibration ...
- Solution Aspect hardware → publication en cours dans NIM Description and Commissioning of the Physics Prototype of a Si-W Electromagnetic Calorimeter for the International Linear Collider

Déterminer la résolution du calorimètre et sa linéarité Déterminer le profil

- Transverse des gerbes $EM \rightarrow$ rayon de Molière
- longitudinal des gerbes $EM \rightarrow capacité à identifier les photons$

Maîtriser l'inhomogénéité

- Transversale → comprendre et corriger des zones non instrumentées et résolution spatiale
- Longitudinale \rightarrow contrôler l'échantillonnage

■ Aspect *caractérisation physique* → publication en phase de finalisation

Linéarité et résolution

$$\frac{\Delta E}{E} (\%) = \frac{17.7 \pm 0.1}{\sqrt{E}} \oplus (1.1 \pm 0.1)$$

L'utilisation d'un facteur de calibration par couche (pair/impair) améliore la résolution de 0.3%/√E à haute énergie, de 0.6%/√E à basse énergie

 \rightarrow

Démontre le degrés de compréhension du ECAL

Séminaire du CPPM, 11/02/2008

Homogénéité transversale

- Modélisation de la perte en énergie dans les zones non instrumentées
- Pertes de l'ordre de 20%
- La résolution sur la barycentre des gerbes permet de prédire la perte d'énergie en fonction de la distance au guard-rings (zone morte)

Homogénéité transversale

Application de la correction sur l'énergie reconstruite

20 GeV electrons, global barycentre

Démontre le contrôle des inhomogénéités transversales (avec le ECAL seul)

Séminaire du CPPM, 11/02/2008

Calorimeter for ILC

Impact sur la résolution

47

Séminaire du CPPM, 11/02/2008

Etapes à venir

- *Reference Design Report* prêt depuis août 2007.
- Lettre(s) d'intention pour 2009.
- La prochaine étape sera la publication du *Technical Design Report Phase1* (TDR1) avant 2010, puis le TDR2. Dès lors, l'ILC sera prêt pour une approbation et la recherche d'un site pourra commencer.
- ~2012 : période clé correspondant à l'acceptation du projet
- La construction devrait alors commencer pour une durée estimée à 7 années.

La synergie avec le LHC

Complémentarité et cross-talk

Séminaire du CPPM, 11/02/2008

Groupe d'étude LHC/ILC

G. Weiglein et al., Physics Interplay of the LHC and the ILC, hep-ph/0410364

Quels apports ?

- ILC + LHC : l'un mesure ce que l'autre ne voit pas
- ILC \oplus LHC : les observations se combinent
- ILC \otimes LHC : l'un influence le fonctionnement de l'autre : *cross-talk*

Exemple de mesures nécessitant une combinaison

Mesure du couplage g_{Htt}

İİL

- N'est exploitable à l'ILC qu'à forte énergie, forte luminosité (pénalisant pour d'autres analyses)
- Seul un rapport (g_{Htt}/g_{HWW}) est mesurable au LHC
- L'ajustement de ces deux couplages à partir de (g_{Htt}/g_{HWW})_{LHC} (g_{Htt})_{ILC} et (g_{HWW})_{ILC} fournit une précision exploitable avec un ILC à basse énergie et faible luminosité

51

Conclusion

 L'apport d'une expérience e+e- à 500 GeV, 1 TeV sera riche

İİL

- Les choix de R&D sont faits pour la physique. Les efforts en R&D sont avancés avec des objectifs clairs
- L'ILC possède une souplesse qui lui permettra de s'adapter à des données provenant d'autres expériences et de leur fournir des indications : l'ILC se fera en synergie avec le LHC

Crédits & références

- Figure pg #5: LEP EW Working Group, Tevatron EW Working Group
- Figures pg #28, 29 : J.-C. BRIENT (LLR)
- Figure pg #35 : Henri VIDEAU (LLR)
- Figure pg #36: ALEPH Collaboration
- Figure pg #41 : CALICE test beam website, Picture from F. Salvador <u>http://www.pp.rhul.ac.uk/~calice/fab/WWW/shift_schedule_2007.php</u>
- Figures pg#40, 42, : Report to the Calorimeter R&D Review Panel, CALICE
 Collaboration, June 2007
- Figure pg#44, 45, 46, 47 CALICE Collaboration, contribution to LCWS07
- Figures pg#48: International Linear Collider

116