

anr[©]

Near Detectors for precision measurements of neutrino oscillation parameters with T2K and Hyper-K

Claudio Giganti LPNHE IN2P3/CNRS

IPHC seminar - 21/03/2024

Neutrinos in the SM

Neutrinos are standard model particles → neutral cousin of the electron and of the other charged leptons

They interact only through weak interactions → Neutral current or Charged current

In the Standard Model neutrinos are massless particles

- First introduced by Bruno Pontecorvo in 1957
- \bullet
- Neutrino propagate as mass eigenstates lacksquare
- At the detection a flavor eigenstate is detected \rightarrow it can be different from the one that was produced

 $v_{\rm e}$ produced in a mixture of ν_1 , ν_2 , ν_3

Neutrino oscillation implies massive neutrinos

Neutrino oscillations

Neutrinos are produced in flavor eigenstates (ν_{μ} , ν_{e} , ν_{τ}) that are linear combination of mass eigenstates (ν_{1} , ν_{2} , ν_{3})

 $P(\nu_e \to \nu_\mu) = \sin^2(2\theta) \sin^2(\Delta m_{12}^2 L/E)$

Neutrino oscillations

 $e \rightarrow e (\delta m^2, \theta_{12})$ $e \rightarrow e (\Delta m^2, \theta_{13})$

$e \rightarrow e (\delta m^2, \theta_{12})$

$\mu \rightarrow \mu (\Delta m^2, \theta_{23})$

- - parameters
 - $\theta_{13} \rightarrow$ dominated by reactor experiments
 - accessible to LBL

• Long baseline (LBL) experiments sensitive to 5 of the PMNS parameters • θ_{23} , $|\Delta m^2_{32}| \rightarrow LBL$ provides the most precise measurements of these

• δ_{CP} and sign of Δm^2_{32} (normal or inverted ordering) \rightarrow still unknown and

Artificial sources of neutrinos

- Oscillations were discovered with solar and and atmospheric neutrinos
- Great sources of neutrinos \rightarrow they come for free, just need to build a detector
 - Ideal for discoveries (span several ranges of L/E -> Δm^2)
 - Cannot be tuned \rightarrow not the best sources for precision measurements
- Reactors \rightarrow reactor spectrum is fixed but the distance can be tuned (KamLAND for θ_{12} , DB/DC/RENO for θ_{13} , Juno for mass ordering)
- Accelerators \rightarrow can tune energy and distance
 - Well defined L/E \rightarrow maximize oscillation probability knowing Δm^2
 - Can produce beam of ν_{μ} and $\overline{\nu}_{\mu}$

 \rightarrow 5 oscillation parameters (θ_{23} , θ_{13} , Δm^2_{23} , δ_{CP} , and mass ordering)

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = \sin^2(2\theta)\sin^2$$

 ${}^{2}_{23}$, δ_{CP} , and mass ordering) ${}^{2}(\Delta m^{2}L/E)$

CP violation

- Need to explain the matter-antimatter \bullet asymmetry in the Universe
- Which mechanism produced such asymmetry?
- We already observed CP violation in the quark sector but the asymmetry is too small
- Need a different mechanism \rightarrow CP violation in the leptonic sector \rightarrow leptogenesis

T2K experiment

- lacksquare
- \bullet
 - v_e and $\bar{\nu}_e$ appearance \rightarrow determine θ_{13} and δ_{CP}
 - Precise measurement of v_{μ} disappearance $\rightarrow \theta_{23}$ and $|\Delta m^2_{32}|$

High intensity ~600 MeV v_{μ} beam at J-PARC (Tokai) $\rightarrow v$ or \bar{v} mode by changing the horn polarity

Neutrinos detected at the Near Detector (ND280) and at the Far Detector (Super-Kamiokande)

- 30 GeV proton beam from J-PARC Main Ring extracted onto a \bullet graphite target
- p+C interactions producing hadrons (mainly pions and kaons) \bullet
- Hadrons are focused and selected in charge by 3 electromagnetic \bullet horns
 - If π^+ are focused ν_{μ} are produced by $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ \bullet
 - Changing the horn current we can produce $\bar{\nu}_{\mu}$ from $\pi^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu}$
- Off-axis technique \rightarrow detectors intercept a narrow-band beam at \bullet the maximum of the oscillation probability

Physics case

ν_{μ} and $\bar{\nu}_{\mu}$ disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2\left(1.27\frac{\Delta m^2 L}{E}\right)$$

Same oscillation probability for ν and $\overline{\nu}$

Sensitive to $|\Delta m^2_{32}|$ and to $\sin^2(2\theta_{23}) \rightarrow$ no sensitivity to mass ordering and δ_{CP}

v_e and \bar{v}_e appearance

Sensitivity to δ_{CP} , to the mass ordering and to the octant of θ_{23} - Normal ordering ... Inverted ordering

100

90

Near Detector complex

Off-Axis ND280 Constrain systematics in T2K oscillation analyses Measure neutrino cross-sections In operation since 2010 and upgraded in 2023

> WAGASCI/BabyMIND Installed in 2019 **Cross-sections on water**

INGRID: on-axis detector Monitoring ν beam profile day-by-day **Cross-section measurements** In operation since 2009

- Near Detector complex at 280 m from the target
- Several detectors installed to monitor the beam, reduce systematic uncertainties in oscillation analyses, and measure ν and $\overline{\nu}$

cross-sections

Off-axis ND280

- Measure beam spectrum and flavor composition before the oscillations \bullet
- Detector installed inside the UA1/NOMAD magnet (0.2 T) lacksquare
- An electromagnetic calorimeter to distinguish tracks from showers
- Upgraded in 2023 but for the analyses shown here the original tracker system is used:
 - 2 Fine Grained Detectors (target for ν interactions). FGD1 is pure scintillator, FGD2 has water layers interleaved with scintillator
 - ionization

• 3 Time Projection Chambers: reconstruct momentum and charge of particles, PID based on measurement of

Super-Kamiokande

50 kton water Cherenkov detector

- ~11k 20" PMTs for the inner detector, ~2000 8" PMTs for the outer detector, used as veto
- ~1000 meters underground in Kamioka, operated since 1996
 - Different shape of Cherenkov ring \rightarrow distinguish e/µ
- Added 0.03% Gd in 2022 \rightarrow improve neutron tagging efficiency

T2K Oscillation analyses

T2K oscillation analysis

Flux prediction: Proton beam measurement Hadron production (NA61 2009 replica target data)

Neutrino interactions: Cross-section models External data Prediction at the Far Detector: Combine flux, cross section and ND280 to predict the expected events at SK

 $\frac{\text{ND280 measurements:}}{v_{\mu} \text{ and } \overline{\nu}_{\mu} \text{ selections to constrain}}$ flux and cross-sections

Extract oscillation parameters!

Neutrino flux predictions

- Systematics on ν and $\overline{\nu}$ fluxes dominated by hadronproduction cross-sections uncertainties in p-C collisions
- Reduced to ~5% thanks to the data from NA61/SHINE

Anti-neutrino mode flux at the FD 10 2 6 E_v [GeV]

Y. Nagai, Hadron **Production Measurements** for Determination of **Neutrino Flux**

ν cross-section model

- At T2K energies dominated by CCQE channel
- Significant 2p2h and resonant contributions
- Mis-modeling of these contribution might bias the neutrino energy reconstruction \rightarrow important to have a correct model with Near detector data

ν_{μ} selections at ND280

- ND280 is a magnetized detector
- Select neutrino and anti-neutrinos interactions by reconstructing muon charge
 - $\nu_{\mu} + n \rightarrow \mu^{-} + p$ while $\overline{\nu}_{\mu} + p \rightarrow \mu^{+} + n$
- TPC PID (dE/dx vs P) is also used to select muons
- Reconstruct momentum and angle of the leptons in the TPCs

ND280 selections

- ND280 magnetized detector
- Select interactions on CH (FGD1) and CH/Water (FGD2)
- Precise measurement of P_{μ} and $\theta_{\mu}~$ with the TPCs
- Distinguish ν from $\overline{\nu}$ interactions thanks to the reconstruction of the charge of the lepton
- Separate samples based on number of reconstructed pions (CC0π, CC1π, CCNπ), protons, photons, etc → 22 samples in total are used in the fit

20

Sample	Pre-ND fit	Post-ND fit
ν -mode 1R μ	16.7%	3.4%
v-mode 1Re	17.3%	5.2%
ν -mode MR	12.5%	4.9%
v-mode 1Re+d.e.	20.9%	14.3%
$\overline{\nu}$ -mode 1Rµ	14.6%	3.9%
$\overline{\nu}$ -mode 1Re	14.4%	5.8%

SK Single ring µ-like sample

- Tune and reduce \bullet uncertainties from flux and cross-section systematics
- Correlate flux and crosssection to predict expected spectra at the Far Detector

SK single ring e-like sample

SK selections Jun 25 09:45:16 2020

- the lepton \rightarrow neutrino energy through QE formula

Oscillation analysis results

Sample	δ _{CP} =-π/2	$\delta_{CP}=0$	$\delta_{CP}=\pi/2$	δ _{CP} =π
ν -mode 1R μ	417.2	416.3	417.1	418.2
ν -mode MR	123.9	123.3	123.9	124.4
⊽-mode 1Rµ	146.6	146.3	146.6	147.0
ν -mode 1Re	113.2	95.5	78.3	96.0
$\overline{\nu}$ -mode 1Re+d.e.	10.0	8.8	7.2	8.4
$\overline{\nu}$ -mode 1Re	17.6	20.0	22.2	19.7

• Preference for $\delta_{CP} \sim -\pi/2$ but CP conserving values are within the 2σ interval

Mass ordering and θ_{23} octant

- Slight preference for normal ordering and upper octant but none of them is significant
 - Bayes factor NO/IO = 3.3
 - Bayes factor $(\theta_{23} > 0.5)/(\theta_{23} < 0.5) = 2.6$

	an dha ballan da an ann an Ann an Ann an	
	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$
NH $(\Delta m_{32}^2 > 0)$	0.23	0.54
IH $(\Delta m_{32}^2 < 0)$	0.05	0.18
Sum	0.28	0.72

 1×10^{-3}

Joint analyses

- In 2023 we released two joint analyses
- T2K+SK combination

• T2K+NOvA combination \rightarrow in back-up if you are interested don't hesitate to ask!

T2K data as in Phys.Rev.D 108 (2023) 7, 072011 -(5 samples) POT: 3.6 x 10²¹

SK-IV data (18 samples) before Gd doping PTEP 2019 (2019) 5, 053F01 - 3244 days (2008 - 2018)

T2K+SK joint analysis

- T2K has good sensitivity to δ_{CP} but mild sensitivity to mass ordering
- SK has good constraint on mass ordering but not on δ_{CP}
- Adding SK atmospheric sample allows to break the degeneracies between the CP violation parameter δ_{CP} and the mass ordering \rightarrow boost sensitivity to CP

T2K+SK model

- Same far detector \rightarrow unify model and systematic uncertainties when necessary
 - Evaluate correlations in detector systematics between the T2K \bullet beam and SK atmospheric samples
 - Develop unified interaction model for T2K beam and energy samples covering similar energy region

ND280 data used to constraint the cross-section model for SK lowenergy samples

d SK low-		Low-energy sub-GeV atm + beam	High-energ multi-GeV at	
		T2K model with ND280 constraint, correlated in low-E/highE (except for high-Q ²)		
mplo	CCQE	high-Q ² params w/ND280	high-Q ² params v	
		add v_e/v_μ ratio unc. (CRPA)		
d.e.	2p2h	T2K model w/ND280	SK model (100% + T2K-style sh	
	Resonant	T2K model w/ND280 + new pion momentum dial + NC1π0 uncertainties	SK model for 3 dials common w use more recent larger 1	
	DIS	T2K model w/ND280	SK model	
	ντ	SK model (25% norm on top of other syst) for other systematics checked that we have no numerically unstable		
	FSI	T2K model w/ND280	T2K model w/o N should be mostly same as	
	SI	T2K model, correlated in low-E/high-E only applied to FC and PC for atm, PN not applied to atm		

Results

- ulletlower octant
- We performed Bayesian and Frequentist analyses \rightarrow frequentist analyses shown today
- section mis-modeling are included
- Normal ordering is preferred, p-value for IO 0.08

arXiv:2405.12488 accepted on PRL

Both experiments individually prefer normal ordering and $\delta_{CP} \sim -\pi/2$, T2K prefers upper octant, SK prefer

• The CP-conserving value of the Jarlskog invariant is excluded with a significance between 1.9 and 2 σ

• In the frequentist analysis, p-value for CPC is 0.037 but increase to 0.05 when potential biases due to cross-

T2K beamline and Near Detector Upgrades

T2K upgrades

- We started to think to this upgrades in ~2018
- Bridge between T2K and Hyper-K coming online in 2027
- Necessary upgrades of the beamline to increase beam power
 - T2K pre-upgrade (500 kW) \rightarrow Goal is to reach 1.3 MW for HK
 - Near Detector upgrade to reduce systematics uncertainties

T2K Projected POT (Protons-On-Target) 03 MR RF upgrade MR Beam 1000 MR Power Supply upgrade 800 600 ntegrate 400 200 T2K Work in Progress 2027] 3 2020 2021 2025 2026 2022 2023 2024

Neutrino beamline upgrades

- Replacement of Main Ring power supplies to allow for higher repetition rate from 2.48s to 1.36s
- Several upgrades done on the neutrino beamline to cope with higher beam power
- Horn being operated at 320 kA instead of 250 kA \rightarrow ~10% increase in the ν

New horn PS for 320 kA/1Hz operation

of beam monitors

Muon monitor

(Half sensors)

New water tank for radioactive water disposal

flux

Increasing cooling capability for the heat generated by beam

Improving performance of beam monitors

proton

Increasing capability of New MUMON Si radio-active waste handling

New target cooling system

Towards higher beam power

/home/daqkun/workspac	e/develop/jnu_bean 💿 💿 🛞	1.1			
MR Run#	91				
MR Shot#	2448782	 /home/daqkun/workspace 	e/develop/jnu_beam_s	mn/slowmonitor/epics/gui/jnu_edm/ti	runk/share/e
(20	024/06/14 09:33:58)	Last shot M	IR Power is	800.9	[]_347]
NU Run#	910576	(2024/06/14 09	:33:58)	000.0	
Event#	61240		MR DCCT_073_ NU CT01 measu	1 measurement : 2.2657e+14 rement : 2.2628e+14	4 [protons p 4 [protons p
Spill#	8358153	Parameter values :		Prediction from paramet	ter values
Deliv. p# (this J-PARC run)	3.88838e+20	LI current: MR micro pulse: MR chop width:	60.02 [mA] 400 [usec] 455 [nsec]	Expected PPP : Expected PPB :	2.1075 2.6343
Deliv. p# (2010/Jan/1~)	4.21035e+21	MR thinning: MR # of bunch:	110/128 8	!!!! Expected Power :	783

- June 2024 → Beam power increased to 800 kW
- Steady improvements to reach 1.3 MW by 2027 \rightarrow increase T2K statistics by a factor of 3 by 2027
- Larger statistics \rightarrow need to reduce systematic uncertainties \rightarrow ND280 upgrade

[kW] !!!!

v2024061:

T2K Projected POT (Protons-On-Target)

What we can do better?

- Improve angular acceptance ν
- But also better reconstruction and usage of the hadronic part of the interactions! \bullet
 - Currently samples are selected according to their topology (0π , 1π , 1p, $N\pi$, ...) but the kinematic: of the hadrons is not used in any way in the constraint on flux and x-sec systematics \rightarrow plenty of additional information to be exploited
 - This is due to both, a low efficiency from ND280 to reconstruct hadrons and the diffucties in modeling the x-sec systematics for the hadronic part
 - With the upgrade we plan to improve the efficiency to reconstruct hadronic part

33

The Near Detector upgrade

Replace part of the P0D detector (measured NC π^0 production) with a new scintillator target (SuperFGD), two TPCs and a ToF detector

- 2 millions plastic scintillator cubes made of polystyrene and doped with 1.5% of paraterphenyl (PTP) and 0.01% of POPOP.
- Each cube is optically independent
- Cubes production was done at UNIPLAST (Russia)

Super-FGD

1,978,368 scintillating cubes

~ 2 meters

Super-FGD

Produce cubes by injection molding

- 2 millions plastic scintillator cubes made of polystyrene and doped with 1.5% of paraterphenyl (PTP) and 0.01% of POPOP.
- Each cube is optically independent
- Cubes production was done at UNIPLAST (Russia)

Assembled in 56 X-Y layers with fishing lines before shipment to Japan

Etched in a chemical to deposit a reflective layer

3 orthogonal holes are drilled

SuperFGD assembly at J-PARC

First cube layer assembly

Horizontal fibers assembly

Vertical fibers assembly

Stop panels removed

Box closure

Top MPPCs assembly

High-Angle TPCs

- Reconstruct leptons emitted at high angle with respect to the beam
- TPC instrumented with resistive MicroMegas modules
- Chambers have been assembled and tested at CERN before shipment

HATPC performances

Time-Of-Flight

- Reconstruct track direction to reject tracks entering the new tracker region
- All 6 TOF modules assembled and tested at CERN and shipped to J-PARC
- Time resolution ~ 150 ps observed during tests at CERN
- 8 bunches neutrino beam structure clearly visible

ible

Installation at J-PARC

Detectors installed and taking data

June 2024: Full upgrade

ND280 Upgrade improvements

- High-Angle TPCs allow to reconstruct muons at any angle with respect to beam
- Super-FGD allow to fully reconstruct in 3D the tracks issued by ν interactions \rightarrow lower threshold and excellent resolution to reconstruct protons at any angle
 - Improved PID performances thanks to the high granularity and light yield
- Neutrons will also be reconstructed by using time of flight \bullet between vertex of $\bar{\nu}$ interaction and the neutron re-interaction in the detector

Protons \rightarrow threshold down to 300 MeV/c (>500/c MeV with current ND280)

44

Expected performances ν_{μ}

- First physics run with full upgrade currently on-going
- Expect to select 20k ν_{μ} CC0 π interactions in the super-FGD for 1 month of beam
- ~ half of them with a reconstructed proton

Towards Hyper-Kamiokande

Water Cherenkov Detectors

Kamiokande (1983 - 1996)

- Atmospheric and solar ν anomaly
- Supernova 1987A

Super-Kamiokande (1996-ongoing)

- World best limit on proton decay
- Discovery of ν oscillations Measurement of oscillations (atm/solar/LBL)

2015

Hyper-Kamiokande (Start in 2027)

- Extended search of proton decay
- Search for CPV in leptonic sector
- Neutrino astrophysics

203?

Hyper-Kamiokande

- Extremely well established Water Cherenkov technology
 - 190 kton FV (SK 22.5), instrumented with up to 40k PMTs •
- HK will be the most sensitive observatory for rare events (proton) decay, SN neutrinos, ...)
- Search for CP violation in lepton sector
 - Upgrade of J-PARC neutrino beam (1.3 MW)
 - Near and Intermediate detector complex
- Construction started in April 2020 \rightarrow start operation in 2027 •

Excavation reached center of cavern dome in July

Hyper-Kamiokande collaboration

18 countries, 82 institutes, ~390 people

Physics case

Solar neutrinos

• MSW effect in the Sun

 Non-standard interactions in the Sun.

Supernovae neutrinos

<u>Direct SNv</u> : Constrains SN models.

<u>Relic SNv</u>: Constrains cosmic star formation history

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

- leptons at 50
- ordering.

• Observe CP violation for • Precise measurement of δ_{CP} . • High sensitivity to v mass

HK schedule

This schedule was proposed to the funding agency, MEXT, in June and approved in August.

Start operation in December 2027!

HK construction status

Excavating world largest human-made cavern

- Excavation on-going \rightarrow expect to complete by the end of the year
- ullet
- Assembly of the electronics modules on-going at CERN ullet(next slide)
- Goal to start HK operation in 2027

20" PMTs being produced by Hamamatsu

LBL physics at HK

- Also ~20000 ν_{μ} and $\overline{\nu}_{\mu}$ interactions will be selected
- Plan to re-use ND280 to constraint flux and x-sec systematics \bullet

 - Do we need more from ND280? \rightarrow ND280++

• ~2000 v_e and 2000 $\bar{\nu}_e$ interactions selected at HK after 10 years of data taking \rightarrow to be compared with ~100 v_e and ~20 $\bar{\nu}_e$ in T2K

• Intermediate Water Cherenkov detector will be built for HK \rightarrow only sensitive to lepton kinematics + off-axis spanning

ND280 challenges for HK

Ultimate precision measurement of δ_{CP} dominated by ν_e/ ν̄_e uncertainties → measure them with higher statistics at the Near Detector

Scaling of crosssection model from Carbon (ND280) to Oxygen (SK/HK) also bring some additional uncertainties → add Water in ND280

For short protons tracks sFGD granularity is not enough and we still miss ~half of the protons → build target with larger granularity

ND280++

- Still profit of ND280 magnetised detector to distinguish ν from $\overline{\nu}$
- Modular detector → can be upgraded in steps
- Recently upgraded with a new 2t high granularity target (Super-FGD)
- A second upgrade will be done during HK to replace the tracker region → ~10 ton available for new ideas!
- Active R&D is on-going

Scintillating-Fibers

- Scintillating-Fibers detector would allow to reduce proton reconstruction threshold to ~ 100 MeV/c \rightarrow sensitive to all protons emitted in ν interactions!
- Two main challenges:
 - Assemble >100 kg of 0.2 mm diameter fibers
 - State-of-the-art SciFi detectors are read out with SiPM \rightarrow huge number of channels!

3D printed Super-FGD-like detector

 Active R&D for 3D printed cubes \rightarrow successfully produced 5x5 cube

3DET, arXiv:2312.04672

WLS fibers readout by SiPM on one side Hamamatsu S13360-1325CS with PDE ~ 25% CAEN FEB 5702 (FERS, CITIROC ASIC)

Compared with standard scintillator cubes layer JINST 16 (2021) 12, P12010

First ever 3D printed scintillator-based particle detector capable of tracking and calorimetry

Water-Based Liquid Scintillator

- Similar design as the sFGD with high granularity and cubes-like structure
- Filled with Water-Based LS to measure neutrino interactions on water
- Goal is to keep Water/Carbon ration > 0.9
- PRCI LPNHE/ETHZ funded in 2025 to pursue this R&D on WbLS

*manufactured by Tim Weber

58

ND280 challenges for HK

Ultimate precision measurement of δ_{CP} dominated by ν_e/ ν̄_e uncertainties → measure them with higher statistics at the Near Detector

Scaling of crosssection model from Carbon (ND280) to Oxygen (SK/HK) also bring some additional uncertainties → add Water in ND280

Conclusions

- Neutrino physics is an extremely active field of research
- The japanese programme will lead this quest for the next ~15 years \rightarrow T2K \rightarrow Hyper-K
- Hyper-K construction is proceeding on-schedule and first data are expected in December 2027
 - IN2P3 contributions to the Far Detector have been defined
- To pursue this programme measurements with a powerful Near Detector are critical
 - T2K recently upgraded its near detector ND280 → first data have been collected
 - R&D for further upgrades to be done for Hyper-K are starting → goal is to start taking data with ND280++ in 2032

Back-up

T2K/NOvA joint analysis

- Profit of different baselines to lift degeneracies of each experiment
 - Full implementation of the likelihood of each experiment and consistent statistical treatment
 - Review of models, systematic uncertainties, possible correlations and of the different analysis approaches

What about δ_{CP} ?

Baseline difference

- The koint analysis allows to exploit the possibility of breaking degeneracies thanks to the different baselines
- Matter effect proportional to baseline and neutrino energy
- NOvA has a longer baseline than T2K → larger matter effects
- In T2K larger impact of δ_{CP}

- Functionally identical Near and Far detectors → both segmented liquid scintillator detectors
 - Significant cancellations in the uncertainties
 - Model and systematics parameters enter as uncertainties on the far/near ratio
- PID done thanks to calorimetric energy estimation
- Neutrino energy reconstructed from a combination of leptonic and hadronic component

NOvA strategy

Correlations

- Different energies
- Different tuning to external data
 - thin target vs thick target data
- Enters the analysis differently
- Different detector models
- Different selections
 - inclusive vs exclusive outgoing pions
- Different energy reconstruction
 - calorimetric vs lepton kinematics
- As the underlying physics is fundamentally the same, we expect correlations
- Different neutrino interaction models
 - optimized for different energy ranges
- Systematics are designed for individual models and analysis strategies

Flux Model

Detector Model

Cross Section Model

Impact of alternate models

- Strategy used in T2K to address possible deficiencies in our crosssection model
- Produce simulated data at Near and Far detector using an alternative x-sec model and then do the oscillation fit
- Check for possible biases in oscillation parameters \rightarrow if there are no (small) biases the analysis is robust with respect to the investigated model change

T2K v_{μ} sample 16 14 E ND Mock Data 12 10E 6 4 2È 0.5 1.5 Events Prediction extrapolate **NOvA** from ND mock data v_{μ} sample Baseline Model MINERvA 1π mock data Reconstructed Neutrino Energy (GeV)

Nock Data

Impact of alternate models

- Strategy used by T2K since many years
- Produce simulated data at Near and Far detector using an alternative x-sec model and then do the oscillation fit
- Check for possible biases in oscillation parameters → if there are no (small) biases the analysis is robust with respect to the investigated model change

Results : $sin^2(\theta_{23})$ and $sin^2(\theta_{13})$

0.05

0.04

0.03

0.02

0.01

0

0.03

 $\sin^2\theta_{13}$

 $\sin^2 \theta_{13}$

- Degeneracies between θ23 and θ13 → lifted thanks to the precise measurement of θ13 from reactors
- Adding reactor constraint flip the octant from the (very) modest preference for lower octant to a modest preference for upper octant

_			0.02
Bayes	NOVA - T2K w/o reactor 1.17	NOVA – T2K – w/ reactor 3.59	0.015
factor	~54% : ~46% posterior	~78% : 22% posterior	0.012

69

Results : Δm²₂₃

- When taken alone both, T2K and NOvA prefer normal ordering but combining them is basically a flip-coin with very mild preference for inverted ordering
- But what about reactor measurement of $\Delta m2?$ Δ

Also see: <u>Stephen Parke W&C, 2023</u>

*Phys. Rev. D 72: 013009, 2005

Another possible way to determine

the Neutrino Mass Hierarchy

Hiroshi Nunokawa¹,
* Stephen Parke², † and Renata Zukanovich Funchal
3 ‡

Mass ordering

V	μμ
\bigwedge	

- Looking at the true mass ordering reactor and LBL measurement of $\Delta m2$ is consistent but it would be off by ~3% in the wrong ordering
- Daya Bay ~2.4% uncertainty on Δm^2
- NOvA and T2K have both $\sim 2\% \rightarrow 1.5\%$ when combined
- Including Daya Bay measureement of Δm^2 flip again the preference to Normal ordering
- T2K/NOvA joint analysis show no preference for either ordering
- Precision on Δm^2 is critical for establishing the mass ordering in combination with JUNO \rightarrow more tests on-going to test possible impacts of additional alternate models

Measurement of δ_{CP}

- Both mass ordering → higher posterior density around δ_{CP}=-π/2
- Normal ordering: wider range of values with higher density close to $\pm \pi$
- Inverted ordering: enhanced preference for $\delta_{CP}=-\pi/2$
 - If IO is true, CP conservation excluded at 3σ

I