

Geometry and energy in EFT

Benoît Assi

RPP (LAPTh, Annecy) - Feb 6, 2025

Mostly based on <u>2307.03187</u> and <u>2410.21563</u>

Motivation

Geometric story begins in practical pheno calculations for SMEFT...

For 2- and 3-point interactions # of contributing SMEFT operators is **small** and **constant** with operator dimension \Rightarrow a lot of pheno can be done with small set of operators

Geometry

Key insight: *S*-matrix is **field re-definition invariant** \leftrightarrow Lagrangian can change but not physical observables

Field re-definition ↔ coord change on scalar field-space manifold

$$\phi^I \to \varphi^I(\phi)$$

Then the field-space metric transforms as a tensor

$$g_{IJ}(\boldsymbol{\phi}) \rightarrow g'_{IJ}(\boldsymbol{\varphi}) = \left(\frac{\partial \phi^K}{\partial \varphi^I}\right) \left(\frac{\partial \phi^L}{\partial \varphi^J}\right) g_{KL}(\boldsymbol{\phi})$$

and the derivative of the scalar transforms as a vector

$$\partial_{\mu}\phi^{I} \rightarrow \partial_{\mu}\phi^{I} = \left(\frac{\partial \phi^{I}}{\partial \phi^{J}}\right) \partial_{\mu}\phi^{J}$$

 \Rightarrow Lagrangian can also be an **invariant scalar density**

Scalar field theory

NLSM: A scalar field theory can be written as

$$\mathscr{L} = \frac{1}{2} h_{IJ}(\boldsymbol{\phi}) (\partial_{\mu} \phi)^{I} (\partial^{\mu} \phi)^{J} - V(\boldsymbol{\phi})$$

Riemannian metric in field-space is $h_{IJ}(\phi)$ wrt field multiplet ϕ^{I}

Expanding around flat-space \Rightarrow higher-dim operators

$$h_{IJ} = \delta_{IJ} + h_{IJ,K} \phi^K + h_{IJ,KL} \phi^K \phi^L + \dots$$

Scalar EFT \leftrightarrow field theory on curved scalar manifold

Can include higher-derivative metric-independent operators E.g.

$$\lambda_{IJKL}(\phi)\partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J}\partial_{\nu}\phi^{K}\partial^{\nu}\phi^{L}$$

[Cheung et al 2202.06972, Cohen et al 2202.06965, Craig et al 2307.15742, Cohen, Lu, Zhang 2410.21378]

Fermion-Scalar-Gauge Field Theory

General Lagrangian [BA, Helset, Manohar, Pagès, Shen 2307.03817]

$$\begin{aligned} \mathscr{L} &= \frac{1}{2} h_{IJ}(\phi) (D_{\mu}\phi)^{I} (D^{\mu}\phi)^{J} - V(\phi) - \frac{1}{4} g_{AB}(\phi) F^{A}_{\mu\nu} F^{B\mu\nu} \\ &+ \frac{1}{2} i k_{\bar{p}r}(\phi) \left(\bar{\psi}^{\bar{p}} \gamma^{\mu} \overleftrightarrow{D}_{\mu} \psi^{r} \right) + i \omega_{\bar{p}rI}(\phi) (D_{\mu}\phi)^{I} \bar{\psi}^{\bar{p}} \gamma^{\mu} \psi^{r} - \bar{\psi}^{\bar{p}} \mathscr{M}_{\bar{p}r}(\phi) \psi^{r} + \bar{\psi}^{\bar{p}} \sigma_{\mu\nu} \mathscr{T}^{\mu\nu}_{\bar{p}r}(\phi, F) \psi^{r} \end{aligned}$$

All tensors are functions of scalar fields except $\mathcal{T}^{\mu\nu}_{\bar{p}r}(\phi,F)$

Under fermion field re-definition $\psi^p \to R^p_{\ s}(\phi)\psi^s$

$$\begin{aligned} k_{\bar{p}r} &\to \left[(R^{\dagger})^{-1} k R^{-1} \right]_{\bar{p}r} ,\\ \omega_{\bar{p}rI} &\to \left[(R^{\dagger})^{-1} \omega_I R^{-1} \right]_{\bar{p}r} + \frac{1}{2} \left[(R^{\dagger})^{-1} k (\partial_I R^{-1}) \right]_{\bar{p}r} - \frac{1}{2} \left[(\partial_I (R^{\dagger})^{-1}) k R^{-1} \right]_{\bar{p}r} \end{aligned}$$

 $\Rightarrow k_{\bar{p}r}$ transforms as a **Hermitian** metric and $\omega_{\bar{p}rI}$ transforms as an **anti-Hermitian** connection

Scalar-fermion metric

Promoting bosonic scalar manifold to a Grassmanian supermanifold We can group the fields into a **multiplet** $\Phi^a = \begin{pmatrix} \phi^I \\ \psi^p \\ \overline{\psi}^p \\ \overline{\psi}^p \end{pmatrix}$ and **metric** [DeWitt '12, Rogers '07] $\bar{g}_{ab}(\phi,\psi) = \begin{pmatrix} h_{IJ} & -\left(\frac{1}{2}k_{\bar{s}r,I} - \omega_{\bar{s}rI}\right)\bar{\psi}^{\bar{s}} & \left(\frac{1}{2}k_{\bar{r}s,I} + \omega_{\bar{r}sI}\right)\psi^{s} \\ \left(\frac{1}{2}k_{\bar{s}p,J} - \omega_{\bar{s}pJ}\right)\bar{\psi}^{\bar{s}} & 0 & k_{\bar{r}p} \\ -\left(\frac{1}{2}k_{\bar{p}s,J} + \omega_{\bar{p}sJ}\right)\psi^{s} & -k_{\bar{p}r} & 0 \end{pmatrix}$ Derived by requiring metric transforms as tensor under field redef

[BA, Helset, Manohar, Pagès, Shen 2307.03817, 2411.XXXX]

Amplitudes

Riemann curvature

$$R_{IJKL} = h_{IM} \left(\partial_K \Gamma^M_{LJ} + \Gamma^M_{KN} \Gamma^N_{LJ} \right) - (K \leftrightarrow L)$$

with covariant derivative ∇_I and Christoffel symbol

$$\Gamma_{JK}^{I} = \frac{1}{2} h^{IL} (h_{JL,K} + h_{LK,J} - h_{JK,L})$$

4-point Born amplitude $\phi_I \phi_J
ightarrow \phi_K \phi_L$ (massless fields)

$$A_{IJKL}^4 = R_{IJKL}s_{IK} + R_{IKJL}s_{IJ}$$
, $s_{ij} = (p_i + p_j)^2$

Amplitudes depend on geometric invariants!

Bose symmetry $\leftrightarrow R_{IJKL}$ symmetries **Bianchi IDs**

$$R_{IJKL} + R_{IKLJ} + R_{ILJK} = 0 \qquad R_{IJMN;L} + R_{IJLM;N} + R_{IJNL;M} = 0$$

Amplitudes

The 4-point $\psi^p \phi^I \to \psi^{\bar{r}} \phi^J$ massless scattering amplitude $\mathcal{A}_{pI\bar{r}J} = (\bar{u}_{\bar{r}} \not\!\!p_I u_p) \bar{R}_{\bar{r}pJI}$

The 5-point $\psi^p \phi^I \rightarrow \psi^{\bar{r}} \phi^J \phi^K$

$$\mathcal{A}_{pI\bar{r}JK} = (\bar{u}_{\bar{r}} \not\!\!p_J u_p) \bar{\nabla}_K \bar{R}_{\bar{r}pIJ} + (\bar{u}_{\bar{r}} \not\!\!p_K u_p) \bar{\nabla}_J \bar{R}_{\bar{r}pIK}$$

$$\bar{\nabla}_K \bar{R}_{\bar{r}pIJ} = \bar{R}_{\bar{r}pIJ,K} - \bar{\Gamma}_{\bar{r}K}^{\bar{s}} \bar{R}_{\bar{s}pIJ} - \bar{\Gamma}_{pK}^s \bar{R}_{\bar{r}sIJ} - \bar{\Gamma}_{IK}^L \bar{R}_{\bar{r}pLJ} - \bar{\Gamma}_{JK}^L \bar{R}_{\bar{r}pIL}$$

Turning on the scalar potential and fermion mass matrix

$$\begin{aligned} \mathcal{A}_{pI\bar{r}J} = & (\bar{u}_{\bar{r}} \not\!\!p_I u_p) \left(\bar{R}_{\bar{r}pJI} + k^{s\bar{t}} \left(\frac{\mathcal{M}_{\bar{r}s;I} \mathcal{M}_{\bar{t}p;J}}{s_{\bar{r}I}} - \frac{\mathcal{M}_{\bar{r}s;J} \mathcal{M}_{\bar{t}p;I}}{s_{pI}} \right) \right) \\ & - (\bar{u}_{\bar{r}} u_p) \left(\mathcal{M}_{\bar{r}p;IJ} - h^{LK} \frac{\mathcal{M}_{\bar{r}p;L} V_{;IJK}}{s_{IJ}} \right) , \end{aligned}$$

Example application: Renormalisation

The 2nd variation has the form [t'Hooft '74, Alonso, Manohar et al '20]

$$\delta_{\eta\eta}S = \frac{1}{2} \int \mathrm{d}^4x \, \left\{ h_{IJ}(\mathscr{D}_{\mu}\eta)^I (\mathscr{D}_{\mu}\eta)^J + X_{IJ}\eta^I \eta^J \right\}$$

and 1-loop pole is given by

$$\Delta S = \frac{1}{32\pi^2 \epsilon} \int \mathrm{d}^4 x \; \left\{ \frac{1}{12} \mathrm{Tr} \left[Y_{\mu\nu} Y^{\mu\nu} \right] + \frac{1}{2} \mathrm{Tr} \left[\mathcal{X}^2 \right] \right\}$$

applied to scalar-gauge theory

$$\left[\widetilde{\mathscr{D}}_{\mu},\widetilde{\mathscr{D}}_{\nu}\right]^{i}_{j} = \left[\widetilde{Y}_{\mu\nu}\right]^{i}_{j} = \widetilde{R}^{i}_{jkl}(D_{\mu}Z)^{k}(D_{\nu}Z)^{l} + \widetilde{\nabla}_{j}\widetilde{t}^{i}_{C}F^{C}_{\mu\nu} \qquad Z^{i}_{\mu} = \left[\begin{matrix}(D_{\mu}\phi)^{I}\\F^{A\ \mu}_{\mu}\end{matrix}\right]$$

$$\widetilde{\mathscr{D}}_{\mu} \begin{bmatrix} \eta^{I} \\ \zeta_{\lambda}^{A} \end{bmatrix} = \partial_{\mu} \begin{bmatrix} \eta^{I} \\ \zeta_{\lambda}^{A} \end{bmatrix} + \begin{bmatrix} t^{I}_{C,J} A^{C}_{\mu} + \Gamma^{I}_{LJ} (D_{\mu}\phi)^{L} & -\Gamma^{I}_{CB} F^{C}_{\mu\sigma} \\ \Gamma^{A}_{CJ} F^{C}_{\mu\lambda} & -f^{A}_{CB} A^{C}_{\mu} \eta_{\lambda\sigma} + \Gamma^{A}_{LB} (D_{\mu}\phi)^{L} \eta_{\lambda\sigma} \end{bmatrix} \begin{bmatrix} \eta^{J} \\ \zeta_{\sigma}^{B} \end{bmatrix}$$

with parts read from each 2nd variation

$$\mathcal{X}^{I}{}_{J} = h^{IK} X_{KJ} \qquad \qquad \mathcal{X} = \begin{bmatrix} [\mathcal{X}_{\eta\eta}]^{I}{}_{J} & [\mathcal{X}_{\eta\zeta}]^{I}{}_{(B\mu_{B})} \\ [\mathcal{X}_{\eta\zeta}]^{(A\mu_{A})}{}_{J} & [\mathcal{X}_{\zeta\zeta}]^{(A\mu_{A})}{}_{(B\mu_{B})} \end{bmatrix}$$

Renormalisation

One-loop RGE from **2nd variation** of action $\psi^a \rightarrow \psi^a + \chi^a$

$$\delta_{\bar{\chi}\chi}S = \int \mathrm{d}^4x \,\left\{\frac{1}{2}ik_{\bar{p}r}\left(\bar{\chi}^{\bar{p}}\gamma^{\mu}\overset{\leftrightarrow}{\mathcal{D}}_{\mu}\chi^r\right) - \bar{\chi}^{\bar{p}}\mathcal{M}_{\bar{p}r}\chi^r + \bar{\chi}^{\bar{p}}\sigma_{\mu\nu}\mathcal{T}^{\mu\nu}_{\bar{p}r}\chi^r\right\}$$

with covariant derivative $\mathscr{D}_{\mu} = \partial_{\mu} \mathbf{1} + \omega_{\mu}$ and fermion fluctuations $\chi = \begin{pmatrix} \chi_L \\ \chi_R \end{pmatrix}$

The metric. mass and dipole terms

$$k = \begin{pmatrix} \kappa_L & 0 \\ 0 & \kappa_R \end{pmatrix} \qquad \qquad \mathcal{M} = \begin{pmatrix} 0 & M \\ M^{\dagger} & 0 \end{pmatrix} \qquad \qquad \mathcal{T}^{\mu\nu} = \begin{pmatrix} 0 & T^{\mu\nu} \\ T^{\mu\nu\dagger} & 0 \end{pmatrix} \qquad \qquad \omega_{\bar{p}rI} = \begin{pmatrix} \omega_{L,\bar{p}rI} & 0 \\ 0 & \omega_{R,\bar{p}rI} \end{pmatrix}$$

gives **covariant** result for $\chi \bar{\chi}$ -variation

$$\Delta S = \frac{1}{32\pi^2 \epsilon} \int d^4 x \left\{ \frac{1}{3} \operatorname{Tr} \left[\mathcal{Y}_{\mu\nu} \mathcal{Y}^{\mu\nu} \right] + \operatorname{Tr} \left[(\mathcal{D}_{\mu} \mathcal{M}) (\mathcal{D}^{\mu} \mathcal{M}) - (\mathcal{M} \mathcal{M})^2 \right] - \frac{16}{3} \operatorname{Tr} \left[(\mathcal{D}_{\mu} \mathcal{T}^{\mu\alpha}) (\mathcal{D}_{\nu} \mathcal{T}^{\nu\alpha}) - (\mathcal{T}^{\mu\nu} \mathcal{T}^{\alpha\beta})^2 \right] - 4i \operatorname{Tr} \left[\mathcal{Y}_{\mu\nu} (\mathcal{M} \mathcal{T}^{\mu\nu} + \mathcal{T}^{\mu\nu} \mathcal{M}) \right] - 8 \operatorname{Tr} (\mathcal{M} \mathcal{T}^{\mu\nu})^2 \right\}$$

SMEFT: bosons

We can apply general EFT to the SMEFT by identification

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi^2 + i\phi^1 \\ \phi^4 - i\phi^3 \end{pmatrix} \qquad A^B_\mu = \begin{pmatrix} G^{\mathscr{A}}_\mu \\ W^a_\mu \\ B_\mu \end{pmatrix}$$

with scalar metric

$$\begin{split} h_{IJ} = & \delta_{IJ} \left[1 + \frac{1}{4} \left({}^{8}C^{(1)}_{H^{6}D^{2}} - {}^{8}C^{(2)}_{H^{6}D^{2}} \right) (\phi^{K}\phi^{K})^{2} \right] + \left(-2 \ {}^{6}C_{H^{4}\Box} \right) \phi^{I}\phi^{J} \\ & + \frac{1}{2} \left[{}^{6}C_{H^{4}D^{2}} + {}^{8}C^{(2)}_{H^{6}D^{2}} (\phi^{K}\phi^{K}) \right] \mathcal{H}_{IJ}(\phi) \,, \end{split}$$

$$\mathcal{H}_{IJ}(\phi) = \phi_I \phi_J + \begin{bmatrix} \phi_2^2 & -\phi_1 \phi_2 & -\phi_2 \phi_4 & \phi_2 \phi_3 \\ -\phi_1 \phi_2 & \phi_1^2 & \phi_1 \phi_4 & -\phi_1 \phi_3 \\ -\phi_2 \phi_4 & \phi_1 \phi_4 & \phi_4^2 & -\phi_3 \phi_4 \\ \phi_2 \phi_3 & -\phi_1 \phi_3 & -\phi_3 \phi_4 & \phi_3^2 \end{bmatrix}$$

and gauge metric

$$g_{AB} = \begin{bmatrix} g_{GG}]_{\mathscr{A}\mathscr{B}} & 0 & 0 \\ 0 & [g_{WW}]_{ab} & [g_{WB}]_a \\ 0 & [g_{BW}]_b & g_{BB} \end{bmatrix}$$

SMEFT: fermions

Again applying formalism to the SMEFT

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi^2 + i\phi^1 \\ \phi^4 - i\phi^3 \end{pmatrix} \qquad A^B_\mu = \begin{pmatrix} G^{\mathscr{A}}_\mu \\ W^a_\mu \\ B_\mu \end{pmatrix} \qquad \psi^p = \begin{pmatrix} \ell^p_L \\ q^p_L \\ e^p_R \\ u^p_R \\ d^p_R \end{pmatrix}$$

with SM Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^A_{\mu\nu} F^{A\,\mu\nu} + (D_\mu H)^\dagger (D^\mu H) - \lambda \left(H^\dagger H - \frac{1}{2} v^2 \right)^2 + \delta_{\bar{p}r} i \bar{\psi}^{\bar{p}} \gamma^\mu D_\mu \psi^r - \bar{\psi}^{\bar{p}} \mathcal{M}_{\mathrm{SM},\bar{p}r} \psi^r$$

and identifying e.g. for RH electrons in SMEFT

$$\begin{split} M_{\bar{p}r} &\supset [Y_{e}]_{\bar{p}r}^{\dagger} H - {}^{6}C_{le_{\bar{p}r}H^{3}}H(H^{\dagger}H) - {}^{8}C_{le_{\bar{p}r}H^{5}}H(H^{\dagger}H)^{2} \\ T_{\bar{p}r}^{\mu\nu} &\supset {}^{6}C_{le_{\bar{p}r}H}H\frac{1}{2}\left(B^{\mu\nu} - i\tilde{B}^{\mu\nu}\right) + {}^{8}C_{le_{\bar{p}r}H^{3}}H(H^{\dagger}H)\frac{1}{2}\left(B^{\mu\nu} - i\tilde{B}^{\mu\nu}\right) \\ \omega_{R,\bar{p}rI} &\supset + i(\phi\gamma_{4})_{I}{}^{6}Q_{e^{2}H^{2}D}^{(1)} \\ \end{split}$$

Bosonic operators fermion loop corrections

$$\begin{split} ^{8}\dot{C}_{H^{8}} =& \lambda \left(-\frac{4}{3}g_{1}^{2} \, ^{6}C_{H^{4}D^{2}} - \frac{8}{3}g_{1}g_{2} \, ^{6}C_{WBH^{2}} \right) \kappa_{1} \\ &+ \left(-8g_{2}^{2} \, ^{6}C_{H^{6}} + \lambda \left(\frac{64}{3}g_{2}^{2} \, ^{6}C_{H^{4}\Box} - 4g_{2}^{2} \, ^{6}C_{H^{4}D^{2}} - \frac{16}{3}g_{1}g_{2} \, ^{6}C_{WBH^{2}} \right) \right) \kappa_{2} \\ &+ \left(6 \, ^{6}C_{H^{6}} - 16\lambda \, ^{6}C_{H^{4}\Box} + 2\lambda \, ^{6}C_{H^{4}D^{2}} \right) \left(-\kappa_{7} + 4\kappa_{10} + 2\kappa_{11} \right) \\ &- \frac{4}{3}\lambda g_{1}^{2}\kappa_{1}^{(8)} - \frac{4}{3}\lambda g_{2}^{2}\kappa_{2}^{(8)} - \frac{4}{3}\lambda g_{2}^{2}\kappa_{3} - \frac{4}{3}\lambda g_{2}^{2}\kappa_{4} - \frac{8}{3}\lambda g_{1}^{2}\kappa_{5} + \frac{4}{3}\lambda g_{2}^{2}\kappa_{5} + \frac{1}{3}\lambda (g_{1}^{2} - g_{2}^{2})\kappa_{6} \right) \\ &+ 4\lambda\kappa_{7}^{(8)} - 8\lambda\kappa_{8} + 4\lambda\kappa_{9}^{(8)} + 4\lambda\kappa_{10}^{(8)} + 4\lambda\kappa_{12} - 4\lambda\kappa_{13} - 4\lambda\kappa_{14} - 4\lambda\kappa_{15} - 4\lambda\kappa_{16} \\ &- 4\lambda\kappa_{17} - 4\kappa_{21}^{(8)} + 2\kappa_{22} - \frac{20}{3}\lambda g_{1}g_{2}\tau_{2} - \frac{8}{3}\lambda g_{2}^{2}\tau_{3}' + 4\lambda g_{2}\tau_{18} + 8\lambda g_{1}\tau_{20} + 2\lambda g_{2}\tau_{26} \right) \\ &\dot{s}\dot{C}_{H^{6}D^{2}}^{(1)} = \left(2g_{1}^{2} \, ^{6}C_{H^{4}D^{2}} + \frac{16}{3}g_{1}g_{2} \, ^{6}C_{WBH^{2}} \right) \kappa_{1} \\ &+ \left(-\frac{32}{3}g_{2}^{2} \, ^{6}C_{H^{4}\Box} + \frac{2}{3}g_{2}^{2} \, ^{6}C_{H^{4}D^{2}} + 8g_{1}g_{2} \, ^{6}C_{WBH^{2}} \right) \kappa_{2} \\ &+ \left(8 \, ^{6}C_{H^{4}\Box} + \, ^{6}C_{H^{4}D^{2}} \right) \left(-\kappa_{7} + 4\kappa_{10} + 2\kappa_{11} \right) \\ &+ 2g_{1}^{2}\kappa_{1}^{(8)} + \frac{10}{3}g_{2}^{2}\kappa_{2}^{(8)} + 2g_{2}^{2}\kappa_{3} + \frac{8}{3}g_{2}^{2}\kappa_{4} + 4g_{1}^{2}\kappa_{5} - \frac{10}{3}g_{2}^{2}\kappa_{5} - \frac{1}{2}g_{1}^{2}\kappa_{6} + g_{2}^{2}\kappa_{6} \\ &+ 2\kappa_{8} - 6\kappa_{9}^{(8)} - 10\kappa_{10}^{(8)} - 2 \kappa_{11}^{(8)} - 6\kappa_{12} + 6\kappa_{13} + 6\kappa_{14} + 10\kappa_{15} + 6\kappa_{16} + 10\kappa_{17} \\ &- 44 \\ &- \frac{2}{-2}\kappa_{18} - \kappa_{19} + 4\kappa_{20} + \frac{32}{3}g_{1}g_{2}\tau_{2} + \frac{20}{3}g_{2}^{2}\tau_{3}' - 8g_{2}\tau_{18} - 12g_{1}\tau_{20} - 6g_{2}\tau_{26} \right) \right) \kappa_{1} \\ \end{array}$$

More beyond geometry?

Recall: Higher-dim operators suppressed by $1/\Lambda$ so amp-squared SMEFT series

$$|\mathscr{A}|^{2} = |A_{\rm SM}|^{2} \left\{ 1 + \frac{2\text{Re}(A_{\rm SM}^{*}A_{6})}{\Lambda^{2} |A_{\rm SM}|^{2}} + \frac{1}{\Lambda^{4}} \left(\frac{|A_{6}|^{2}}{|A_{\rm SM}|^{2}} + \frac{2\text{Re}(A_{\rm SM}^{*}A_{8})}{|A_{\rm SM}|^{2}} \right) + \cdots \right\}$$

Key Insight: Higher-dim operator effects can grow with $E \Rightarrow$ overcome naive suppression by powers of $1/\Lambda$ when $E \sim \Lambda$

Geometry \leftrightarrow metric re-summation of higher-dimensional operators in $(\phi^2 \sim (HH^{\dagger}) \sim v^2)/\Lambda^2$ but **not** $E/\Lambda \Rightarrow$ **need more** for $E \gg v$

ID higher-dim **multi-particle operators** that grow with energy and have the most significant impact on high-energy processes

VBF Higgs production

Need process with high *E* kinematics \leftrightarrow amplify effects of high-dim operators

Previous work found leading operators up to $\mathcal{O}(1/\Lambda^2)$ in VBF and VH [Araz et al '20, Corbett and Martin '23]

Our aim: Argue which operators are *E*-enhanced and push to **unconstrained** $\mathcal{O}(1/\Lambda^4)$ [BA and Martin 2410.25163]

Energy-enhanced geoSMEFT operators

In regime $E \gg v$ the terms in \mathscr{A}_6 and \mathscr{A}_8 that incorporate the highest powers of E carry the largest impact

 $2 \rightarrow 3$ amplitudes have mass dimension -1 with naive scaling [BA, Martin, In preparation]

$$\mathscr{A}_{\rm SM} \sim g_{\rm SM}^3 \frac{v}{E^2}, \quad \mathscr{A}_{Hq}, \mathscr{A}_{Hu,d} \sim g_{\rm SM}^2 \frac{c_6 v}{\Lambda^2}, \quad \mathscr{A}_{q^2 H^2 XD}, \mathscr{A}_{q^2 H^2 D^3} \sim g_{\rm SM}^2 \frac{c_8 v E^2}{\Lambda^4}, \quad \mathscr{A}_{q^4 H^2} \sim \frac{c_8 v E^2}{\Lambda^4}$$

The ratio of D = 8 interference piece to the D = 6

$$\frac{\mathscr{A}_{\mathrm{SM}}^{*}\mathscr{A}_{8}}{\mathscr{A}_{\mathrm{SM}}^{*}\mathscr{A}_{6}} \sim \left(\frac{c_{8}}{c_{6}}\right) \left(\frac{E^{2}}{\Lambda^{2}}\right)$$

For fixed $\Lambda \sim \text{TeV}$ the Wilson coefficients for *E*-enhanced D = 6 operators such as $c_{Hq}^{(3)} \ll 1$ to be consistent with LEP [Ellis et al. '20]

Energy-enhanced contributions to VBF

Geometry-driven basis

simplifies energy counting

Lacks extra D's and allows expansion only in v/Λ

Energy counting at a vertex is dictated by the lowest-dim geoSMEFT operator

Only impacts three-particle vertices or less \Rightarrow look **beyond the geoSMEFT** operator set for *E*-enhanced

Operator set **processdependent** requiring interference with SM - same chirality, color, Lorentz

Dimension 6

	Operator	relevant ψ
$Q_{H\psi}^{(1)}$	$i(\bar{\psi}_p \gamma^{\nu} \psi_r) H^{\dagger} \overleftrightarrow{D}_{\mu} H$	$\psi = \{q, u, d\}$
$Q_{H\psi}^{(3)}$	$i(\psi\gamma^{\nu}\sigma^{I}\psi)H^{\dagger}D_{\mu}\sigma_{I}H$	$\psi = \{q\}$

Remaining HVV and ffV vertices suppressed [Araz et al '20]

Dimension 8

	Operator	relevant ψ
$Q^{(1)}_{\psi^2 H^2 D^3}$	$i(ar{\psi}_p\gamma^\mu\psi_r)\left[(D_ u H)^\dagger(D^2_{(\mu, u)}H) - (D^2_{(\mu, u)}H)^\dagger(D_ u H) ight]$	$\psi = \{q, u, d\}$
$Q^{(2)}_{\psi^2 H^2 D^3}$	$i(\bar{\psi}_p \gamma^{\mu} \overleftrightarrow{D}_{\nu} \psi_r) \left[(D_{\mu} H)^{\dagger} (D_{\nu} H) + (D_{\nu} H)^{\dagger} (D_{\mu} H) \right]^{\dagger}$	$\psi = \{q, u, d\}$
$Q^{(3)}_{\psi^2 H^2 D^3}$	$i(\bar{\psi}_p\gamma^\mu\sigma^I\psi_r)\left[(D_ u H)^\dagger au^I(D^2_{(\mu, u)}H) - (D^2_{(\mu, u)}H)^\dagger \sigma^I(D_ u H) ight]$	$\psi = \{q\}$
$Q^{(4)}_{\psi^2 H^2 D^3}$	$i(\bar{\psi}_p\gamma^{\mu}\sigma^I\overleftrightarrow{D}_{\nu}\psi_r)\left[(D_{\mu}H)^{\dagger}\tau^I(D_{\nu}H) + (D_{\nu}H)^{\dagger}\tau^I(D_{\mu}H)\right]$	$\psi = \{q\}$

	Operator		Operator	relevant ψ
$Q_{a^4H^2}^{(1)}$	$(\bar{q}_p \gamma^\mu q_r) (\bar{q}_p \gamma_\mu q_r) (H^{\dagger} H)$	$Q^{(1)}_{\psi^2 B H^2 D}$	$(\bar{\psi}_p \gamma^{ u} \psi_r) D^{\mu} (H^{\dagger} H) B_{\mu u}$	$\psi = \{q, u, d\}$
$Q_{q^4H^2}^{(2)}$	$(\bar{q}_p \gamma^\mu q_r) (\bar{q}_p \gamma_\mu \sigma^I q_r) (H^{\dagger} \sigma^I H)$	$Q^{(2)}_{\psi^2 B H^2 D}$	$i(ar{\psi}_p\gamma^ u\psi_r)(H^\dagger\overleftrightarrow{D}^\mu H)B_{\mu u}$	$\psi = \{q, u, d\}$
$Q_{a^4H^2}^{(3)}$	$(\bar{q}_p \gamma^\mu \sigma^I q_r) (\bar{q}_p \gamma_\mu \sigma^I q_r) (H^{\dagger} H)$	$Q^{(3)}_{\psi^2 B H^2 D}$	$(\bar{\psi}_p \gamma^{\nu} \sigma^I \psi_r) D^{\mu} (H^{\dagger} \sigma^I H) B_{\mu\nu}$	$\psi = \{q\}$
$Q_{u^4H^2}^{(1)}$	$(\bar{u}_p \gamma^\mu u_r)(\bar{u}_p \gamma_\mu u_r)(H^{\dagger}H)$	$Q^{(4)}_{\psi^2 B H^2 D}$	$i(\bar{\psi}_p \gamma^{\nu} \sigma^I \psi_r) (H^{\dagger} \overleftrightarrow{D}^{I\mu} H) B_{\mu\nu}$	$\psi = \{q\}$
$Q_{d^4H^2}^{(1)}$	$(ar{d}_p\gamma^\mu d_r)(ar{d}_p\gamma_\mu d_r)(H^\dagger H)$	$Q^{(1)}_{\psi^2 W H^2 D}$	$(\bar{\psi}_p \gamma^{\nu} \psi_r) D^{\mu} (H^{\dagger} \sigma^I H) W^I_{\mu\nu}$	$\psi = \{q, u, d\}$
$Q^{(1)}_{u^2 d^2 H^2}$	$(ar{u}_p \gamma^\mu u_r) (ar{d}_p \gamma_\mu d_r) (H^\dagger H)$	$Q^{(2)}_{\psi^2 W H^2 D}$	$i(\bar{\psi}_p \gamma^{ u} \psi_r) (H^{\dagger} \overleftrightarrow{D}^{I\mu} H) W^I_{\mu u}$	$\psi = \{q, u, d\}$
$Q_{q^2 u^2 H^2}^{(1)}$	$(\bar{q}_p \gamma^\mu q_r) (\bar{u}_p \gamma_\mu u_r) (H^{\dagger} H)$	$Q^{(3)}_{\psi^2 W H^2 D}$	$(\bar{\psi}_p \gamma^{ u} \sigma^I \psi_r) D^{\mu} (H^{\dagger} H) W^I_{\mu u}$	$\psi = \{q\}$
$Q^{(2)}_{q^2 u^2 H^2}$	$\left((\bar{q}_p \gamma^\mu \sigma^I q_r) (\bar{u}_p \gamma_\mu u_r) (H^\dagger \sigma^I H) \right)$	$Q^{(4)}_{\psi^2 W H^2 D}$	$i(\bar{\psi}_p\gamma^{ u}\sigma^I\psi_r)(H^{\dagger}\overleftrightarrow{D}^{\mu}H)W^I_{\mu u}$	$\psi = \{q\}$
$Q^{(1)}_{q^2 d^2 H^2}$	$(ar{q}_p\gamma^\mu q_r)(ar{d}_p\gamma_\mu d_r)(H^\dagger H)$	$Q^{(5)}_{\psi^2 W H^2 D}$	$\epsilon_{IJK}(\bar{\psi}_p\gamma^\nu\sigma^I\psi_r)D^\mu(H^\dagger\sigma^JH)W^K_{\mu\nu}$	$\psi = \{q\}$
$Q_{a^2d^2H^2}^{(2)}$	$\left((ar{q}_p \gamma^\mu \sigma^I q_r) (ar{d}_p \gamma_\mu d_r) (H^\dagger \sigma^I H) \right)$	$Q^{(6)}_{\psi^2 W H^2 D}$	$i\epsilon_{IJK}(\bar{\psi}_p\gamma^{\nu}\sigma^I\psi_r)(H^{\dagger}\overleftrightarrow{D}^{J\mu}H)W^K_{\mu\nu}$	$\psi = \{q\}$

From 993 to 41 E-enhanced operators for VBF up to D=8

[BA and Martin 2410.25163]

Numerical analysis and resonant operators

Implemented LHC VBF selection cuts on $m_{j_1j_2}$, $\Delta \eta_{j_1j_2}$, $p_{T,H}$ [Araz et al '20]

Numerical analysis to confirm EFT validity up to $(D = 8)^2$ terms; minimum $\Lambda \approx 1.2 \,\mathrm{TeV}$

D = 8 operators with **largest** contributions consistent with energy counting: $c_{q^2H^2D^3}^{(3)}$ and $c_{q^2H^4}^{(3)}$

Caution: $c_{q^2H^2D^3}^{(4)}$ causes EFT breakdown at $\Lambda = 1.2$ TeV due to \hat{s}^3 scaling \Rightarrow exclude since requires $\Lambda > 3$ TeV

Туре	$(480{ m GeV},2.5)$	SM Deviation (%)	$(600{ m GeV},3.0)$	SM Deviation (%)
SM	0.1375(2)	-	0.1239(2)	-
D = 6	$0.1357(7)^{+0.0089}_{-0.0090}$	[-7.9, +5.2]	$0.1219(6)^{+0.0077}_{-0.0063}$	[-6.8, +4.5]
$D = 6 + (6 \times 6)$	$0.1355(7)^{+0.0087}_{-0.0077}$	[-7.1, +4.9]	$0.1221(6)^{+0.0080}_{-0.0065}$	[-6.8, +4.9]

Туре	$(480{ m GeV},2.5)$	SM Deviation (%)	$(600{ m GeV},3.0)$	SM Deviation (%)					
SM	0.1375(2)	-	0.1239(2)	-					
	Coefficients at $D = 8$								
$c^{(1)}_{q^4H^2}$	0.1396(2)	+1.5	0.1261(2)	+1.8					
$c^{(2)}_{q^4H^2}$	0.1367(3)	0.6	0.1234(2)	-0.4					
$c^{(3)}_{q^4H^2}$	0.1512(3)	10.0	0.1359(2)	+9.7					
$c^{(1)}_{d^4H^2}$	0.1376(2)	+0.1	0.1240(2)	+0.1					
$c^{(1)}_{u^4H^2}$	0.1380(3)	+0.4	0.1250(2)	+0.9					
$c^{(1)}_{u^2 d^2 H^2}$	0.1374(3)	-0.1	0.1238(2)	-0.1					
$c^{(1)}_{q^2 d^2 H^2}$	0.1377(3)	+0.1	0.1222(3)	-1.4					
$c^{(2)}_{q^2 d^2 H^2}$	0.1370(3)	-0.4	0.1237(3)	-0.2					
$c^{(1)}_{q^2 u^2 H^2}$	0.1372(2)	-0.2	0.1239(3)	0.0					
$c^{(2)}_{q^2 u^2 H^2}$	0.1385(2)	+0.7	0.1252(3)	+1.0					
$c^{(1)}_{q^2BH^2D}$	0.1374(3)	-0.1	0.1243(3)	+0.3					
$c^{(3)}_{q^2BH^2D}$	0.1374(3)	0.0	0.1243(2)	+0.2					
$c^{(1)}_{q^2WH^2D}$	0.1375(2)	+0.2	0.1241(2)	+0.2					
$c^{(3)}_{q^2WH^2D}$	0.1408(3)	+2.4	0.1270(2)	+2.5					
$c^{(5)}_{q^2WH^2D}$	0.1372(3)	-0.2	0.1240(3)	+0.1					
$c^{(1)}_{u^2WH^2D}$	0.1381(2)	+0.4	0.1241(3)	+0.2					
$c^{(1)}_{u^2BH^2D}$	0.1375(3)	0.0	0.1242(2)	+0.2					
$c^{(1)}_{d^2WH^2D}$	0.1373(3)	-0.1	0.1239(2)	0.0					
$c^{(1)}_{d^2BH^2D}$	0.1375(3)	0.0	0.1241(2)	+0.2					
$c^{(1)}_{q^2H^2D^3}$	0.1376(3)	+0.1	0.1240(2)	+0.1					
$c^{(2)}_{q^2H^2D^3}$	0.1372(3)	-0.2	0.1240(2)	+0.1					
$c^{(3)}_{q^2H^2D^3}$	0.1439(3) +4.7 0.12		0.1299(2)	+4.8					
$c_{q^2H^2D^3}^{(4)}(*)$	0.1419(3)	+3.2	0.1280(3)	+3.3					
$c^{(1)}_{u^2H^2D^3}$	0.1380(3)	+0.4	0.1244(3)	+0.4					
$c^{(1)}_{d^2H^2D^3}$	0.1371(2)	-0.3	0.1239(2)	0.0					

 $(D = 8)^2 > (D = 8) \times SM$

Observable distributions

D = 8 operators influence high p_T^H regions more than D = 6 operators

Small c_6 **LEP constrained** values largely suppress D = 6 impacts

Angular distributions **subtle differences** among SMEFT operators

Operators $c_{Hq}^{(3)}$ and $c_{q^2H^2}^{(3)}$ minimally affect angular distributions while $c_{q^2H^2D^3}^{(3)}$ causes noticeable shifts

Takeaway: Observables at high p_T^H , optimized kinematic cuts and observable correlations **needed to distinguish** D = 8 operators

Recap

Provided geometric framework for both bosons and fermions

Applied geometric formulation to calculate one-loop bosonic RGEs up to D = 8

Dimension-eight operators significantly impact VBF Higgs production when dimensionsix operators are constrained

Developed *E*-enhanced arguments \rightarrow small # of operators have large impact at high-*E* offsetting their higher-dimensional suppression

What next

- 1) Completing fermion story in super-geometry and obtain remaining 1-loop RGEs - fermonic, boson and mixed [BA, A. Helset, J.Pagès, C.Shen, *In preparation*]
- 2) Understanding higher-derivative geometry
- 3) Fully incorporating gauge bosons gauge-invariantly [Cohen et al. '22, Craig et al. '23,...]
- 4) Provide a more general prescription to identify energy-enhanced operators

[BA, Martin, *In preparation*]

5) Combined VBF di-Higgs and single Higgs analyses to enhance sensitivity to dimension-eight operators

Back-up

Crossed-process: Associated production $pp \rightarrow V(\bar{q}q)H$

Crossing initial fermion

transforms VBF topology to $pp \rightarrow V(\bar{q}q)H$

Simulated $pp \rightarrow Z(\bar{q}q)H$ with $75 \text{ GeV} \leq p_{T,Z} \leq 400 \text{ GeV}$ and $70 \leq m_{jj} \leq 110 \text{ GeV} \leftrightarrow$ STSX binning strategy [Corbett et al '23]

Operator $c_{H^2Q^2D^3}^{(3)}$ significantly impacts $p_{T,H}$ affecting both VBF and VH production

Operator $c_{H^2Q^4}^{(3)}$ negligible effect on *VH* production since analysis cuts break crossing symmetry \Rightarrow deviations only in VBF

SMEFT RGEs

E.g. of **bosonic RGE** at dimension six

$$\begin{split} {}^{6}\!\dot{C}_{H^{4}\square} &= m_{H}^{2} \Biggl\{ -24 \left({}^{6}\!C_{H^{4}\square} \right)^{2} + \frac{3}{4} \left({}^{6}\!C_{H^{4}D^{2}} \right)^{2} + 8 \;\; {}^{6}\!C_{H^{4}\square} {}^{6}\!C_{H^{4}D^{2}} - 64 \left({}^{6}\!C_{G^{2}H^{2}} \right)^{2} \\ &- 24 \left({}^{6}\!C_{W^{2}H^{2}} \right)^{2} - 8 \left({}^{6}\!C_{B^{2}H^{2}} \right)^{2} + 4 \left({}^{6}\!C_{WBH^{2}} \right)^{2} - 3 \;\; {}^{8}\!C_{H^{6}D^{2}}^{(1)} + 2 \;\; {}^{8}\!C_{H^{6}D^{2}}^{(2)} \Biggr\} \end{split}$$

And dimension eight

$$\begin{split} {}^8\!\dot{C}_{H^6D^2}^{(1)} &= -96 \; \; {}^6\!C_{H^6} {}^6\!C_{H^4\square} - 12 \; \; {}^6\!C_{H^6} {}^6\!C_{H^4D^2} + \left(352\lambda + 20g_1^2 + \frac{20}{3}g_2^2\right) \left({}^6\!C_{H^4\square}\right)^2 \\ &+ \left(-23\lambda + \frac{1}{8}g_1^2 + \frac{161}{24}g_2^2\right) \left({}^6\!C_{H^4D^2}\right)^2 + \left(-64\lambda - 2g_1^2 + 12g_2^2\right) {}^6\!C_{H^4\square} {}^6\!C_{H^4D^2} \\ &- 22g_2^2 \; {}^6\!C_{H^4\square} {}^6\!C_{W^2H^2} + 6g_1^2 \; {}^6\!C_{H^4\square} {}^6\!C_{B^2H^2} - \frac{32}{3}g_1g_2 \; {}^6\!C_{H^4\square} {}^6\!C_{WBH^2} \\ &+ 8g_2^2 \; {}^6\!C_{H^4D^2} {}^6\!C_{W^2H^2} + 6g_1^2 \; {}^6\!C_{H^4D^2} {}^6\!C_{B^2H^2} + \frac{43}{3}g_1g_2 \; {}^6\!C_{H^4D^2} {}^6\!C_{WBH^2} \\ &+ 512\lambda \left({}^6\!C_{G^2H^2}\right)^2 + \left(192\lambda + 4g_2^2\right) \left({}^6\!C_{W^2H^2}\right)^2 + \left(64\lambda + 12g_1^2\right) \left({}^6\!C_{B^2H^2}\right)^2 \\ &+ \left(-3g_1^2 - 3g_2^2\right) \left({}^6\!C_{WBH^2}\right)^2 + \frac{80}{3}g_1g_2 \; {}^6\!C_{W^2H^2} {}^6\!C_{WBH^2} + \frac{8}{3}g_1g_2 \; {}^6\!C_{B^2H^2} {}^6\!C_{WBH^2} \\ &+ \left(68\lambda + \frac{1}{2}g_1^2 - \frac{31}{6}g_2^2\right) {}^8\!C_{H^6D^2}^{(1)} + \left(-8\lambda + 7g_1^2 + \frac{17}{3}g_2^2\right) {}^8\!C_{H^6D^2}^{(2)}, \end{split}$$

Renormalisation

with identified covariant parts

$$\begin{split} \left[\mathcal{Y}_{\mu\nu}\right]_{\ r}^{p} &= \left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right]_{\ r}^{p} = \bar{R}^{p}_{\ rIJ} (D_{\mu}\phi)^{I} (D_{\nu}\phi)^{J} + \left(\bar{\nabla}_{r}t^{p}_{A}\right) F^{A}_{\mu\nu}, \\ \left(\mathcal{D}_{\mu}\mathcal{M}\right)_{\ r}^{p} &= k^{p\bar{t}} (\mathcal{D}_{\mu}\mathcal{M}_{\bar{t}r}) = k^{p\bar{t}} \left[D_{\mu}\mathcal{M}_{\bar{t}r} - \bar{\Gamma}^{\bar{s}}_{I\bar{t}} (D_{\mu}\phi)^{I}\mathcal{M}_{\bar{s}r} - \bar{\Gamma}^{s}_{Ir} (D_{\mu}\phi)^{I}\mathcal{M}_{\bar{t}s}\right], \\ \left(\mathcal{M}\mathcal{M}\right)_{\ r}^{p} &= k^{p\bar{t}} \mathcal{M}_{\bar{t}q} k^{q\bar{s}} \mathcal{M}_{\bar{s}r}, \\ \left(\mathcal{D}_{\mu}\mathcal{T}^{\alpha\beta}\right)_{\ r}^{p} &= k^{p\bar{t}} (\mathcal{D}_{\mu}\mathcal{T}^{\alpha\beta}_{\bar{t}r}) = k^{p\bar{t}} \left[D_{\mu}\mathcal{T}^{\alpha\beta}_{\bar{t}r} - \bar{\Gamma}^{\bar{s}}_{I\bar{t}} (D_{\mu}\phi)^{I}\mathcal{T}^{\alpha\beta}_{\bar{s}r} - \bar{\Gamma}^{s}_{Ir} (D_{\mu}\phi)^{I}\mathcal{T}^{\alpha\beta}_{\bar{t}s}\right], \\ \left(\mathcal{T}^{\mu\nu}\mathcal{T}^{\alpha\beta}\right)_{\ r}^{p} &= k^{p\bar{t}} \mathcal{T}^{\mu\nu}_{\bar{t}q} k^{q\bar{s}} \mathcal{T}^{\alpha\beta}_{\bar{s}r}. \end{split}$$

Next: Pure boson and mixed variations $\eta \chi$, $\eta \zeta$, $\eta \eta$, $\zeta \zeta$ requires more understanding of supergeometry [BA, Helset, Pagès, Shen, 2411.XXXX]

Motivation

SMEFT observable up to $\mathcal{O}(1/\Lambda^4)$ corrections

$$\langle \mathcal{O}_i \rangle^{\text{SMEFT}} = \int [\text{dps}] \left(|A_{\text{SM}}|^2 + 2 \operatorname{Re}(A_{\text{SM}}) A_{\text{SMEFT}}(\tilde{C}_i^{(6)}) + \left| A_{\text{SMEFT}}(\tilde{C}_i^{(6)}) \right|^2 \right)$$

$$+ \int [\text{dps}] \left(2 \operatorname{Re}(A_{\text{SM}}) A_{\text{SMEFT}}(\tilde{C}_i^{(8)}) \right).$$

Precision SMEFT analysis **going beyond** tree-level and D = 6 for many **resonant** processes e.g. $h \rightarrow \gamma \gamma, h \rightarrow \gamma Z, h \rightarrow GG, Z \rightarrow \psi \overline{\psi}, \dots$ Why?

Figure 1. The deviations in $h \to \gamma \gamma$ from the $\mathcal{O}(v^2/\Lambda^2)$ (red line) and partial-square (black line) results, and the full $\mathcal{O}(v^4/\Lambda^4)$ results (green $\pm 1 \sigma_{\delta}$, yellow $\pm 2 \sigma_{\delta}$, and grey $\pm 3 \sigma_{\delta}$ regions). In the left panel the coefficients determining the $\mathcal{O}(v^2/\Lambda^2)$ and partial-square results are $C_{HB}^{(6)} = -0.01$, $C_{HW}^{(6)} = 0.004$, $C_{HWB}^{(6)} = 0.007$, $C_{HD}^{(6)} = -0.74$, and $\delta G_F^{(6)} = -1.6$. In the right panel they are $C_{HB}^{(6)} = 0.007$, $C_{HW}^{(6)} = 0.007$, $C_{HWB}^{(6)} = -0.015$, $C_{HD}^{(6)} = 0.50$, and $\delta G_F^{(6)} = 1.26$.

Figure 2. The deviations in $h \to \mathcal{Z}\gamma$ from the $\mathcal{O}(v^2/\Lambda^2)$ (red line) and partial-square (black line) results, and the full $\mathcal{O}(v^4/\Lambda^4)$ results (green $\pm 1 \sigma_{\delta}$, yellow $\pm 2 \sigma_{\delta}$, and grey $\pm 3 \sigma_{\delta}$ regions). In the left panel the coefficients determining the $\mathcal{O}(v^2/\Lambda^2)$ and partial-square results are $C_{HB}^{(6)} = -0.01, C_{HW}^{(6)} = 0.02, C_{HWB}^{(6)} = -0.011, C_{HD}^{(6)} = 0.53$, and $\delta G_F^{(6)} = 0.13$. In the right panel they are $C_{HB}^{(6)} = 0.002, C_{HW}^{(6)} = 0.001, C_{HWB}^{(6)} = -0.001, C_{HD}^{(6)} = 0.28$, and $\delta G_F^{(6)} = -1.15$.

[Hays et al 2007.00565]

Many operators beyond D = 6 + loop-corrections for perturbative uncertainty of SMEFT

New calculation and organisational tools required \Rightarrow uncover geometric EFT structure

Gauge fields

Incorporating gauge fields in similar fashion [Helset, Manohar, Simons 2210.08000, 2212.03253]

$$\mathcal{L} = \frac{1}{2} h_{IJ}(\boldsymbol{\phi}) (D_{\mu} \boldsymbol{\phi})^{I} (D^{\mu} \boldsymbol{\phi})^{J} - V(\boldsymbol{\phi}) - \frac{1}{4} g_{AB}(\boldsymbol{\phi}) F^{A}_{\mu\nu} F^{\mu\nu,B}$$

on scalar field manifolds with metrics $h_{IJ}(\phi)$ and $g_{AB}(\phi)$

$$(D_{\mu}\phi)^{I} = \partial_{\mu}\phi^{I} + A^{B}_{\mu}t^{I}_{B}(\phi) \qquad F^{B}_{\mu\nu} = \partial_{\mu}A^{B}_{\nu} - \partial_{\nu}A^{B}_{\mu} - f^{B}_{\ CD}A^{\ C}_{\mu}A^{\ D}_{\nu}$$

Killing vectors (isometric) of scalar manifold with null Lie derivative

$$t_A^K h_{IJ,K} + t_{A,I}^K h_{KJ} + t_{A,J}^K h_{IK} = 0$$
 and Lie bracket $[t_A, t_B]^I = f_{AB}^C t_C^I$

Can also use **combined metric**

$$\tilde{g}_{ij} = \begin{pmatrix} h_{IJ} & 0\\ 0 & -g_{AB}\eta_{\mu_A\mu_B} \end{pmatrix}$$

and combined geometric quantities

Motivation

And what do these operators do?

For 2- and 3-point interactions # of contributing SMEFT operators is **small** and **constant** with operator dimension \Rightarrow pheno can be done with small set of operators

Overview

EFT in a nutshell

A QFT describing low-energy limit of a 'more fundamental' theory (can also be an EFT...)

Allows calculation of experimental quantities with expansion to finite order in small parameter

We will look at

- 1) Exploiting field-space geometry and energy
- 2) Scattering amplitudes
- 3) Mapping geometric quantities to SMEFT
- 4) Applications: RGEs and precision observables
- 5) Adding fermions to the geometric story

Geometric quantities

As before we have Christoffel symbols

$$\bar{\Gamma}_{JK}^{I} = \Gamma_{JK}^{I}$$

$$\bar{\Gamma}_{Is}^{p} = \bar{\Gamma}_{sI}^{p} = k^{p\bar{r}} \left(\frac{1}{2}k_{\bar{r}s,I} + \omega_{\bar{r}sI}\right)$$

$$\bar{\Gamma}_{I\bar{s}}^{\bar{p}} = \bar{\Gamma}_{\bar{s}I}^{\bar{p}} = \left(\frac{1}{2}k_{\bar{s}r,I} - \omega_{\bar{s}rI}\right)k^{r\bar{p}}$$

Satisfying metric compatibility

$$\nabla_I k_{\bar{b}a} = \partial_I k_{\bar{b}a} - k_{\bar{c}a} \Gamma^{\bar{c}}_{I\bar{b}} - k_{\bar{b}d} \Gamma^d_{Ia} = 0$$

and Riemann curvature

$$\bar{R}_{\bar{p}rIJ} = \omega_{\bar{p}rJ,I} - \left(\frac{1}{2}k_{\bar{p}s,I} - \omega_{\bar{p}sI}\right)k^{s\bar{t}}\left(\frac{1}{2}k_{\bar{t}r,J} + \omega_{\bar{t}rJ}\right) - (I \leftrightarrow J)$$

Summary

Dimension-eight operators significantly impact VBF Higgs production when dimension-six operators are constrained

Developed *E*-enhanced arguments \rightarrow small subset of operators have large impact at high-*E* offsetting their higher-dimensional suppression

Identified operators of type $q^2H^2D^3$ and q^4H^2 which cause significant deviations in high-*E* distributions

Outlook

1) Provide a more general prescription to identify energy-enhanced operators [BA, Martin, In preparation]

2) Study more high-E processes e.g. di-Higgs where dimension-six operators are constrained to uncover dimension-eight effects

3) Combined VBF di-Higgs and single Higgs analyses to enhance sensitivity to dimension-eight operators

Scattering amplitudes

Similarly for 5-point amplitude

Again amplitudes group into geometric invariants!

Scalar-gauge scattering

Some **Born amplitudes for** massless fields $\phi_I \phi_J \rightarrow \phi_K \phi_L$

 $\mathcal{A}_{IJKL} = R_{IJKL}s_{IK} + R_{IKJL}s_{IJ}$

$$+\frac{(t_{I;J}\cdot t_{K;L})(s_{IL}-s_{IK})}{s_{IJ}}+\frac{(t_{I;K}\cdot t_{J;L})(s_{IL}-s_{IJ})}{s_{IK}}+\frac{(t_{I;L}\cdot t_{K;J})(s_{IJ}-s_{IK})}{s_{IL}}$$

and
$$\phi_I \phi_J \to A_A A_B$$

$$\mathcal{A}_{IJAB} = \left(\nabla_{I} \nabla_{J} g_{AB} - \frac{1}{2} (\nabla_{I} g_{AC}) g^{CD} (\nabla_{J} g_{BD}) - \frac{1}{2} (\nabla_{J} g_{AC}) g^{CD} (\nabla_{I} g_{BD}) \right) B_{1}$$
$$- \left(\frac{(\nabla_{I} g_{AC}) g^{CD} (\nabla_{J} g_{BD})}{s_{IA}} + \frac{(\nabla_{J} g_{AC}) g^{CD} (\nabla_{I} g_{BD})}{s_{JA}} \right) B_{2} + \dots$$

Again amplitudes depend on geometric invariants!

Goal: bottom-up EFT to systematically classify "all" BSM physics (knowledge of UV **not required**)

Assumptions: new nearly physics decoupled $\Rightarrow \Lambda \sim {\rm few \ TeV} \gg v$ and at the accessible scale only SM fields + symmetries

Extensive studies done for \mathscr{L}_6 and much available:

- 1) Complete RGEs and various 1-loop results
- 2) Tools for matching and numerical analysis
- 3) Many tree-level calculations of EW, Higgs, & flavour observables

Similarly but to much lesser extent for \mathscr{L}_8 (RGEs and tree-level)

X^3 φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$			$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$	Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Qee	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\omega \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^\dagger arphi) (ar q_{p} u_r \widetilde arphi)$	$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
Qw	$\varepsilon^{IJK}W^{I\nu}W^{J\rho}W^{K\mu}$	Q _{wD}	$(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	Qdua	$(\varphi^{\dagger}\varphi)(\bar{q}_{n}d_{r}\varphi)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q _{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$
0~~	$\left \begin{array}{c} \mu & \nu & \rho \\ \rho & IJK \widetilde{W}^{I\nu} W^{J\rho} W^{K\mu} \end{array} \right $					$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Qeu	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$
~~ <i>W</i>	$\frac{\nabla \mu}{\nabla^2}$		a/2 V. a		a/2, a2 D	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Qed	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$
	$X^-\varphi^-$		$\psi^{-} X \varphi$	o(1)	$\psi^{-}\varphi^{-}D$			$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(l_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(l_{p}\gamma^{\mu}l_{r})$			$Q_{ud}^{(8)}$	$\left((ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t) ight)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\tilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i D^{I}_{\mu} \varphi)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$					$Q_{qd}^{(8)}$	$\left((\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right)$
$Q_{\varphi W}$	$arphi^{\dagger} arphi W^{I}_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{e}_{p}\gamma^{\mu}e_{r})$	$(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating		
$Q_{arphi \widetilde{W}}$	$arphi^{\dagger}arphi \widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{ledg}	$Q_{ledg} = (\bar{l}_{r}^{j}e_{r})(\bar{d}_{s}q_{t}^{j})$		$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha})^{T}Cu_{r}^{\beta}\right]\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}\right]$		
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar{q}_p \sigma^{\mu u} u_r) \widetilde{arphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	$Q_{quqd}^{(1)}$	$\begin{bmatrix} Q_{quad}^{(1)} & (\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t}) & Q_{qqu} \end{bmatrix} \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \begin{bmatrix} \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \end{bmatrix}$		$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu u} T^A d_r) \varphi G^A_{\mu u}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$ \left\ \begin{array}{c} Q_{quqd}^{(8)} \\ Q_{quqd}^{(8)} \\ \end{array} \right\ \left(\bar{q}_p^j T^A u_r \right) \varepsilon_{jk} (\bar{q}_s^k T^A d_t) \\ \left\ \begin{array}{c} Q_{qqq} \\ Q_{qqq} \\ \end{array} \right\ \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon^{\alpha\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon^{\alpha\beta\gamma} \varepsilon^{\beta\gamma} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \\ \varepsilon^{\alpha\beta\gamma} \varepsilon^{\beta\gamma} \varepsilon^{\beta\gamma$			$\begin{bmatrix} \beta k \end{bmatrix} \begin{bmatrix} (q_s^{\gamma m})^T C l_t^n \end{bmatrix}$		
$Q_{\varphi WB}$	$arphi^{\dagger} au^{I} arphi W^{I}_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$		$\left[(u_s^{\gamma})^T C e_t\right]$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(3)}$	$\left (\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t}) \right.$				

Bosonic

Fermionic

The gauge metric entries

$$\begin{split} g_{GG} &= \begin{bmatrix} 1-2 \ \ ^{6}C_{G^{2}H^{2}}(\phi^{I}\phi^{I}) - \ ^{8}C_{G^{2}H^{4}}(\phi^{I}\phi^{I})^{2} \end{bmatrix} \mathbb{1}_{8\times8} \,, \\ [g_{WW}]_{ab} &= \begin{bmatrix} 1-2 \ \ ^{6}C_{W^{2}H^{2}}(\phi^{I}\phi^{I}) - \ ^{8}C_{W^{2}H^{4}}^{(1)}(\phi^{I}\phi^{I})^{2} \end{bmatrix} \mathbb{1}_{3\times3} - 4 \ \ ^{8}C_{W^{2}H^{4}}^{(2)}x_{a}(\phi)x_{b}(\phi) \,, \\ [g_{WB}]_{a} &= [g_{BW}]_{a} = \begin{pmatrix} 2 \ \ ^{6}C_{WBH^{2}} + \ ^{8}C_{WBH^{4}} \end{pmatrix} x_{a} \,, \\ g_{BB} &= \begin{bmatrix} 1-2 \ \ ^{6}C_{B^{2}H^{2}}(\phi^{I}\phi^{I}) - \ ^{8}C_{B^{2}H^{4}}(\phi^{I}\phi^{I})^{2} \end{bmatrix} \,. \end{split}$$

and Riemann curvature

$$\begin{split} R_{IJKL} &= -\ 2 \ \ ^{6}\!C_{H^{4}\square} \big(\delta_{IK} \delta_{JL} - \delta_{IL} \delta_{JK} \big) - \frac{1}{2} ^{6}\!C_{H^{4}D^{2}} \sum_{a=1}^{4} \big([\Upsilon_{a}]_{IK} [\Upsilon_{a}]_{JL} - [\Upsilon_{a}]_{IL} [\Upsilon_{a}]_{JK} \big) \\ &- \left(4 \left({}^{6}\!C_{H^{4}\square} \right)^{2} + {}^{8}\!C_{H^{6}D^{2}}^{(1)} - {}^{8}\!C_{H^{6}D^{2}}^{(2)} \right) \big(\phi^{R} \phi^{R} \big) \big(\delta_{IK} \delta_{JL} - \delta_{IL} \delta_{JK} \big) \\ &+ \left({}^{8}\!C_{H^{6}D^{2}}^{(1)} - {}^{8}\!C_{H^{6}D^{2}}^{(2)} \right) \big(\delta_{JK} \phi_{I} \phi_{L} + \delta_{IL} \phi_{J} \phi_{K} - \delta_{JL} \phi_{I} \phi_{K} - \delta_{IK} \phi_{J} \phi_{L} \big) \\ &+ \text{dimension-eight } \Upsilon \text{ terms }, \end{split}$$

Some **bosonic** operators at **dimension six**

$${}^{6}\mathcal{L}_{\mathrm{SMEFT}}^{(6)} = C_{H^{6}}(H^{\dagger}H)^{3} + C_{H^{4}D^{2}}(H^{\dagger}H)\Box(H^{\dagger}H) + C_{H^{4}D^{2}}(D_{\mu}H^{\dagger}H)(H^{\dagger}D^{\mu}H) + C_{H^{2}B^{2}}(H^{\dagger}H)B_{\mu\nu}B^{\mu\nu} + \dots$$

Some operators at dimension eight

$${}^{8}\mathcal{L}_{\text{SMEFT}} = C_{H^{8}}(H^{\dagger}H)^{4} + C_{H^{6}D^{2}}^{(1)}(H^{\dagger}H)^{2}(D_{\mu}H^{\dagger}D^{\mu}H) + C_{H^{6}D^{2}}^{(2)}(H^{\dagger}H)(H^{\dagger}\tau^{a}H)(D_{\mu}H^{\dagger}\tau^{a}D^{\mu}H) + C_{H^{4}B^{2}}(H^{\dagger}H)^{2}B_{\mu\nu}B^{\mu\nu} + \dots$$

Dimension 6 and 8 matching coefficients in Lagrangian

$${}^{6}\!C_{H^{6}}, \ {}^{6}\!C_{H^{4}\square}, \ {}^{6}\!C_{H^{4}D^{2}}, \ {}^{6}\!C_{G^{2}H^{2}}, \ {}^{6}\!C_{W^{2}H^{2}}, \ {}^{6}\!C_{B^{2}H^{2}}, \ {}^{6}\!C_{WBH^{2}},$$

 ${}^{8\!}C_{H^{8}}, \ {}^{8\!}C_{H^{6}D^{2}}^{(1)}, \ {}^{8\!}C_{H^{6}D^{2}}^{(2)}, \ {}^{8\!}C_{G^{2}H^{4}}^{(1)}, \ {}^{8\!}C_{W^{2}H^{4}}^{(1)}, \ {}^{8\!}C_{W^{2}H^{4}}^{(3)}, \ {}^{8\!}C_{B^{2}H^{4}}^{(1)}, \ {}^{8\!}C_{WBH^{4}}^{(1)}$

The RGEs dependent on coefficients above were determined

Renormalisation

One-loop RGE from 2nd variation of action [t'Hooft '74, Alonso, Manohar et al '20]

$$\begin{split} A^{B\mu_B} &= \mathsf{A}^{B\mu_B} + \zeta^{B\mu_B} - \frac{1}{2}\widetilde{\Gamma}^{(B\mu_B)}_{jk}\eta^j\eta^k + \dots \\ \phi^I &= \Phi^I + \eta^I - \frac{1}{2}\widetilde{\Gamma}^I_{jk}\eta^j\eta^k + \dots \end{split}$$

$$\eta^i = \begin{pmatrix} \eta^I \\ \zeta^{A\mu_A} \end{pmatrix}$$

in geodesic coordinates

$$\frac{\mathrm{d}^2 \phi^i}{\mathrm{d}\lambda^2} + \Gamma^i_{jk}(\phi) \frac{\mathrm{d}\phi^j}{\mathrm{d}\lambda} \frac{\mathrm{d}\phi^k}{\mathrm{d}\lambda} = 0 \qquad \blacklozenge \qquad \phi^i = \phi^i_0 + \lambda \eta^i - \frac{1}{2} \lambda^2 \Gamma^i_{jk}(\phi_0) \eta^j \eta^k + \dots$$

$$\phi^i \to \phi^i + \eta^i - \frac{1}{2} \Gamma^i_{jk} \eta^j \eta^k + \mathcal{O}(\eta^3)$$

gives **covariant** result e.g. $\eta\eta$ -variation

$$\delta_{\eta\eta}S = \frac{1}{2}\int d^4x \left\{ h_{IJ} \left(\widetilde{\mathscr{D}}_{\mu}\eta \right)^I \left(\widetilde{\mathscr{D}}_{\mu}\eta \right)^J + \left[-\widetilde{R}_{IKJL} (D_{\mu}\phi)^K (D^{\mu}\phi)^L - (\nabla_I \nabla_J V) \right. \\ \left. - \frac{1}{4} \left(\nabla_I \nabla_J g_{AB} - \Gamma^C_{IA} g_{CB,J} - \Gamma^C_{IB} g_{AC,J} \right) F^{A\mu\nu} F^B_{\mu\nu} - h_{IK} h_{JL} g^{AB} t^K_A t^L_B \right] \eta^I \eta^J \right\}$$

Scalar amplitudes

5-point amplitude $\phi_I \phi_J \rightarrow \phi_K \phi_L \phi_M$

 $A_{IJKLM}^{5} = \nabla_{M} R_{IJKL} (s_{LM} + s_{JL}) + \nabla_{K} R_{ILJM} s_{LM} + \nabla_{L} R_{IKJM} s_{KM} + \nabla_{L} R_{IJKM} s_{JM} + \nabla_{M} R_{IKJL} s_{KL}$

Including 4-derivative interactions

$$A_{IJKL}^{4} \supset \frac{1}{2} \lambda_{IJKL} s_{IJ} s_{KL} + \frac{1}{2} \lambda_{IKJL} s_{IK} s_{JL} + \frac{1}{2} \lambda_{JKIL} s_{JK} s_{IL}$$
$$A_{IJKLM}^{5} \supset \frac{1}{2} \nabla_{M} \lambda_{IJKL} s_{IJ} s_{KL} + \frac{1}{2} \nabla_{M} \lambda_{IKJL} s_{IK} s_{JL} + \frac{1}{2} \nabla_{M} \lambda_{JKIL} s_{JK} s_{IL} + \text{cylic}$$

New soft theorem for theory of scalars with no potential [Alonso et al '20]

$$\lim_{q_i \to 0} A_{n+1}^{i_1 \dots i_n i} = \nabla^i A_n^{i_1 \dots i_n}$$

Plus double- and triple-soft theorems - generalises the double-soft theorem for pions [Arkani-Hamed et al '08]

Scalar field EFT

Scalar field theory up to two-derivatives

[Alonso, Manohar et al 1605.0360]

$$\mathcal{L} = \frac{1}{2} h_{IJ}(\boldsymbol{\phi}) (\partial_{\mu} \boldsymbol{\phi})^{I} (\partial^{\mu} \boldsymbol{\phi})^{J} - I(\boldsymbol{\phi})$$

Expanding metric $h_{IJ}(\phi) \Rightarrow$ higher-dim operators \leftrightarrow vertices

$$h_{IJ} = h_{IJ} + h_{IJ,K}\phi^K + h_{IJ,KL}\phi^K\phi^L + \dots$$

Analysis of energy-enhanced contributions to VBF

Consider $qV \rightarrow q'H$ as proxy for VBF to ID most enhanced SMEFT operators

High-*E* limit $\hat{t} \gg m_V$ with V_L effects grow the strongest with E once $qV \to q'H$ embedded in VBF

$$\mathscr{A}(qZ_{L,\mu} \to qH) = -i\langle \bar{q} | \gamma_{\mu} p_{H}^{\mu} | q] \frac{1}{\hat{t}} \left(g_{Zq_{L}q_{L}} g_{HZZ}^{(1)} + g_{ZHq_{L}q_{L}}^{(1)} \frac{\hat{t}}{\Lambda^{2}} + (g_{ZHq_{L}q_{L}}^{(2)} - g_{ZHq_{L}q_{L}}^{(3)}) \frac{\hat{t}^{2}}{2\Lambda^{4}} \right)$$

4-particle contact terms scale with higher powers of \hat{t}

$$\mathscr{A}(qW_{L,\mu} \to q'H) = -i\langle \bar{q} | \gamma_{\mu} p_{H}^{\mu} | q] \frac{1}{\hat{t}} \left(g_{Wq_{L}q'_{L}} g_{HWW}^{(1)} + g_{WHq_{L}q'_{L}}^{(1)} \frac{\hat{t}}{\Lambda^{2}} + (g_{WHq_{L}q'_{L}}^{(2)} - g_{WHq_{L}q'_{L}}^{(4)}) \frac{\hat{t}^{2}}{2\Lambda^{4}} - g_{WHq_{L}q'_{L}}^{(3)} \frac{\hat{t} (2\hat{s} + \hat{t})}{2\Lambda^{4}} \right)$$

New terms involving quark momenta $\propto \hat{s}\hat{t}$ and **dominate** when \hat{s} is large but \hat{t} remains small; other SMEFT contributions are **suppressed** by \hat{t}

Total cross-sections

Effective *W* **approximation:** treating incoming *W* as proton constituent in the $2 \rightarrow 3$ process \Rightarrow convolving the *W*-boson PDF with the $qV \rightarrow q'H$ in the limit $\hat{t} \rightarrow 0$ [Dawson '84]

Dominant D = 6 terms are suppressed at large \hat{s} with $W_T \Rightarrow$ Focus on W_L

$$\int_{W_L}^{\theta_{\max}} d\theta^* 2 \operatorname{Re}(A_{\mathrm{SM}} A^{(6)})_{W_L} \sim \frac{v^2 \,\hat{s}}{\Lambda^2 \, m_W^2} \qquad \int_{W_L}^{\theta_{\max}} d\theta^* \left|A^{(6)}\right|_{W_L}^2 \sim \frac{v^2 \,\hat{s}}{\Lambda^4},$$

Dominant D = 8 interference terms from operators leads to different scaling for $\sim c_{q^2H^2D^3}^{(3)}, c_{q^2H^2WD}^{(3)}$ vs. $c_{q^2H^2D^3}^{(4)} \leftrightarrow$ operators with different Lorentz structures

$$\int_{0}^{\theta_{\text{max}}} d\theta^* 2 \operatorname{Re}(A_{\text{SM}} A_3^{(8)})_{W_L} \sim \frac{v^2 \hat{s}^2}{\Lambda^4 m_W^2} \qquad \int_{0}^{\theta_{\text{max}}} d\theta^* 2 \operatorname{Re}(A_{\text{SM}} A_{24}^{(8)})_{W_L} \sim \frac{v^2 \hat{s}}{\Lambda^4}$$

Squared terms exhibit larger differences

$$\int_{0}^{\theta_{\max}} d\theta^* |A_3^{(8)}|_{W_L}^2 \sim \frac{v^2 \hat{s}^3}{\Lambda^8} \qquad \int_{0}^{\theta_{\max}} d\theta^* |A_{24}^{(8)}|_{W_L}^2 \sim \frac{v^2 \hat{s} m_W^4}{\Lambda^8}$$

Effective *W* approximation

Additionally: The operator $c_{a^2H^2D^3}^{(3)}$ interferes with the SM for W_T

$$\int_{-\infty}^{\theta_{\text{max}}} d\theta * 2 \operatorname{Re}(A_{\text{SM}} A_{24}^{(8)})_{W_T} \sim \frac{v^2 \hat{s}}{\Lambda^4} \qquad \int_{-\infty}^{\theta_{\text{max}}} d\theta * |A_{24}^{(8)}|_{W_T}^2 \sim \frac{v^2 \hat{s} m_W^4}{\Lambda^8}$$

This weaker interference is **offset** by larger transverse W PDFs [Dawson '84]

Determining whether T or L effects dominate requires **numerical** analysis beyond $2 \rightarrow 2$ approximations

New pure contact D = 8 vertices from q^4H^2 operators contribute in VBF with largest effect from (LL)(LL) helicity structures

$$\mathcal{A}(u_L d_L \to u_L d_L H) \sim v c_{q^4 H^2}^{(3)} \langle 34 \rangle [12]$$

Large # of operators \Rightarrow many operators can contribute to same observable

Ideal: global SMEFT fit to very precise measurement, all C_i free parameters

Reality: only partial fits are feasible since too many operators to constrain

Aim: come up with set of **observables** sensitive to a close manageable set of operators

Dominant effect: the tree-level interference e.g. $|\mathscr{A}_{SM}\mathscr{A}_{d=6}^*| \sim C_i/\Lambda^2$ \Rightarrow if suppressed can neglect C_i

N.B. many studies along this vein, interesting to think up new observables

Renormalisation

One-loop RGE from 2nd variation of action in geodesic coordinates

$$\begin{split} A^{B\mu_B} &= \mathsf{A}^{B\mu_B} + \zeta^{B\mu_B} - \frac{1}{2} \widetilde{\Gamma}^{(B\mu_B)}_{jk} \eta^j \eta^k + \dots \\ \phi^I &= \Phi^I + \eta^I - \frac{1}{2} \widetilde{\Gamma}^I_{jk} \eta^j \eta^k + \dots \end{split} \qquad \eta^i = \begin{pmatrix} \eta^I \\ \zeta^{A\mu_A} \end{pmatrix}$$

gives **covariant** result e.g. $\eta\eta$ -variation

$$\delta_{\eta\eta}S = \frac{1}{2}\int d^4x \left\{ h_{IJ} \left(\widetilde{\mathscr{D}}_{\mu}\eta \right)^I \left(\widetilde{\mathscr{D}}_{\mu}\eta \right)^J + \left[-\widetilde{R}_{IKJL} (D_{\mu}\phi)^K (D^{\mu}\phi)^L - (\nabla_I \nabla_J V) \right. \\ \left. - \frac{1}{4} \left(\nabla_I \nabla_J g_{AB} - \Gamma^C_{IA} g_{CB,J} - \Gamma^C_{IB} g_{AC,J} \right) F^{A\mu\nu} F^B_{\mu\nu} - h_{IK} h_{JL} g^{AB} t^K_A t^L_B \right] \eta^I \eta^J \right\}$$

 $Z^i_{\mu} = \begin{vmatrix} (D_{\mu}\phi)^I \\ F^A_{\mu} \\ \mu_A \end{vmatrix}$

with covariant derivative

$$(\widetilde{\mathscr{D}}_{\mu}\eta)^{I}=\partial_{\mu}\eta^{I}+t^{I}_{B,K}A^{B}_{\mu}\eta^{K}+\widetilde{\Gamma}^{I}_{jk}Z^{j}_{\mu}\eta^{k}$$

similarly for gauge $\zeta\zeta$ and mixed $\zeta\eta$ variation

HEFT LEFT and ALP-SMEFT

HEFT: SMEFT \subset HEFT with HEFT a fusion of ChPT in scalar sector and SMEFT in gauge & fermion sector, HEFT has 3 goldstones embedded in matrix plus one gauge singlet Higgs \Rightarrow HEFT = SMEFT + no assumptions about Higgs scalar being in doublet

ALP-SMEFT: EFTs to describe interactions of axion our axion-like particles which are not present in SMEFT or HEFT

Below EW scale: can write low energy effective theory (LEFT) with quark and lepton fields, and only QCD and QED gauge fields

Combining EFTs: If scales widely separated can match and run repeatedly between EFTs systematically

Data rich era spanning multiple scales

