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Many more black hole and neutron star mergers discovered by 

the LIGO-VIRGO-KAGRA collaboration

Image Credit: EGO*

Credit:LIGO-Virgo/Aaron Geller/Northwestern University*

LIGO:  First detection of Gravitational Waves (GWs) in 2015

Introduction: gravitational waves detection

New era of precision measurements of GWs


Need for highly accurate GW templates, 

especially in view of the future upgrades of  

the LIGO/VIRGO/KAGRA network 
and future missions such as 


LISA, Einstein Telescope, Cosmic Explorer,  
Decigo, Tian-Qin, GEO-HF


New window to test physics beyond general relativity (GR)! 
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Introduction: gravitational waves detection



Quantum Amplitudes 
and  Gravitational Radiation
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• Focus: Classical scattering problem in GR

Large separation: 
Rs ≪ b

Flat background:  

gμν = ημν +
2

MPl
hμν

Quantum Amplitudes and Classical Observables

How can we describe this problem using Scattering Amplitudes computed in QFT?



Quantum Amplitudes and Radiation Observables

2 workhorses 

KMOC formalism On-shell methods
Kosower, Maybee, O'Connell 

[arXiv:1811.10950] 

Cristofoli, R. Gonzo, D. A. Kosower, D. O'Connell 
[arXiv:2107.10193]

Arkani-Hamed, Huang, Huang 
arXiv:1709.04891

spires-search://a%20cristofoli,%20andrea
spires-search://a%20gonzo,%20riccardo
spires-search://a%20kosower,%20david%20a.
spires-search://a%20o'connell,%20donal


Quantum Amplitudes and Classical Observables

•Computations organized in perturbative expansion with Lorentz covariance preserved at each step  

•Often, analytic results in places where only numerical results previously available   

•Can exploit many modern techniques used in particle physics to simplify calculation 

•Easy to include spin of the colliding objects  

•Can be easily applied to relevant theories such as QED or GR  

•Can be straightforwardly extended to beyond GR predictions

Why employ quantum amplitudes for classical calculations? 

One downside is that amplitudes naturally give scattering observables, while phenomenologically bound systems are more relevant. 

The problem of bound-to-boundary continuation is not fully solved yet 

Alternative formalism  of WEFT where this particular problem is absent 



GR Rμν ≡ out⟨ψ |hμν(x) |ψ⟩out

or gauge invariant Rμναβ ≡ out⟨ψ |Rμναβ(x) |ψ⟩out Rh ≡ out⟨ψ |hμν(x) |ψ⟩outϵ−
μν

One can define GR radiation observables as vacuum expectation values of metric field operators and its derivatives 

strain

Given radiation observable   one defines waveform  as Rh Wh

Rh(x) =
Wh(t)
|x |

|x | → ∞ t ≡ x0 − |x |
retarded time

Furthermore one defines spectral waveform or waveshape   as Fourier transform: fh

fh(ω) = ∫ dteiωtWh(t)

KMOC formalism



KMOC formalism

|ψ⟩out = S |ψ⟩in ⇒ Rh = in⟨ψ |S†hμν(x)S |ψ⟩inϵ−
μν

hμν ∼ ∫ dΦk ain(k) e−ikx + h . c ⇒ Rh ⊃ in⟨ψ |S†ain(k)S |ψ⟩in

"in-in observable"

"generalized amplitude",

 distinct from ordinary S matrix elements  

Rh ≡ out⟨ψ |hμν(x) |ψ⟩outϵ−
μν

|ψ⟩in = Πi=1,2[∫ dΦ(pi)fi(pi)eipibi] |p1p2⟩in

The radiation observables depends on an amplitude-like object

out⟨ψ′ |ψ⟩in = in⟨ψ′ |S† |ψ⟩inCaron-Huot, Giroux, Hannesdottir, Mizera 
arXiv:2310.12199

It can be related to usual S matrix elements via 

in⟨ψ |S†ain(k)S |ψ⟩in = ∫ dΦX in⟨ψ |S† |X⟩in in⟨X |ain(k)S |ψ⟩in = ∫ dΦX in⟨ψ |S† |X⟩in in⟨Xk |S |ψ⟩in

In the following the "in" label dropped to reduce clutter

p1p2 ! kX, and a conjugated S-matrix for X ! p10p20 , summed and integrated over

all states X, which we denote pictorially as

Exp
k
=

10

20

1

2

k

X S
†

S (4.10)

The shaded X in this picture corresponds to an insertion of a complete set of on-shell

states with positive energy flowing across the dashed cut.

Using the definition of the amplitude M through S = + i(2⇡)D�D(
P

pi)M,

we can rewrite the waveshape in terms of amplitudes and cut amplitudes,
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k

X S
†

S

Exp
k

=

10

20

1

2

k

iM

iM +

10

20

1

2

k

X �iM†
iM

Cut1020 . (4.11)

Importantly, the first term on the left-hand side is called superclassical (or hyperclas-

sical), since it is proportional to a power of 1

~ in perturbation theory. As discussed

in previous subsections, it thus does not make sense to take a classical limit ~ ! 0

directly at the level of scattering amplitudes at a fixed order in perturbation theory.

Nevertheless, this power counting in ~ is entirely expected from classical physics:

The exclusive amplitude in gravity is exponentially suppressed since the probability

to create some fixed state is exponentially small. The amplitude therefore behaves

as ⇠ eiS/~, where S is the action, and expanding out in G results in inverse powers

of ~. The waveshape, Exp
k
, is, on the other hand, a perfectly sensible classical

observable since it sums over unobserved configurations. At a mathematical level,

the cut term labeled Cut1020 in (4.11) precisely works to cancel o↵ the 1

~ dependence

of the scattering amplitude term, rendering Exp
k
well defined in the ~ ! 0 limit.

In addition to cancelling the superclassical contribution, the cut term contributes to

the infrared divergence and the finite part of Exp
k
as we discuss below.

4.2 The classical limit

Our strategy will be to compute Exp
k
in the classical limit of quantum field theory,

following [13]. The waveshape Exp
k
for measuring a graviton in the background of

– 36 –

Cristofoli, R. Gonzo, D. A. Kosower, D. O'Connell 
[arXiv:2107.10193]
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Quantum Amplitudes and Radiation Observables
Rh ∼ ∫ dΦX in⟨ψ |S† |X⟩in in⟨Xk |S |ψ⟩in In terms of usual amplitudes  S = 1 + iδ4(p)ℳ

p1p2 ! kX, and a conjugated S-matrix for X ! p10p20 , summed and integrated over

all states X, which we denote pictorially as

Exp
k
=

10

20

1

2

k

X S
†

S (4.10)

The shaded X in this picture corresponds to an insertion of a complete set of on-shell

states with positive energy flowing across the dashed cut.

Using the definition of the amplitude M through S = + i(2⇡)D�D(
P

pi)M,

we can rewrite the waveshape in terms of amplitudes and cut amplitudes,
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Importantly, the first term on the left-hand side is called superclassical (or hyperclas-

sical), since it is proportional to a power of 1

~ in perturbation theory. As discussed

in previous subsections, it thus does not make sense to take a classical limit ~ ! 0

directly at the level of scattering amplitudes at a fixed order in perturbation theory.

Nevertheless, this power counting in ~ is entirely expected from classical physics:

The exclusive amplitude in gravity is exponentially suppressed since the probability

to create some fixed state is exponentially small. The amplitude therefore behaves

as ⇠ eiS/~, where S is the action, and expanding out in G results in inverse powers

of ~. The waveshape, Exp
k
, is, on the other hand, a perfectly sensible classical

observable since it sums over unobserved configurations. At a mathematical level,

the cut term labeled Cut1020 in (4.11) precisely works to cancel o↵ the 1

~ dependence

of the scattering amplitude term, rendering Exp
k
well defined in the ~ ! 0 limit.

In addition to cancelling the superclassical contribution, the cut term contributes to

the infrared divergence and the finite part of Exp
k
as we discuss below.

4.2 The classical limit

Our strategy will be to compute Exp
k
in the classical limit of quantum field theory,

following [13]. The waveshape Exp
k
for measuring a graviton in the background of

– 36 –

Well defined

in classical limit

Contains  
superclassical 


terms ℳ ∼ eiS/ℏ

Cut terms cancel 
superclassical 


terms

Rh ∼ ⟨ψk |ℳ |ψ⟩ + ∫ dΦX ⟨ψ |ℳ† |X⟩⟨Xk |ℳ |ψ⟩



Classical limit of  is the leading term 

under the classical (soft) scaling 

Rh

pi → ℏ0pi

mi → ℏ0mi

qi → ℏ1qi

kn → ℏ1kn

Si → ℏ−1Si

momenta of matter

particles representing 


classical object 

masses of matter particles 

momentum transfer

for matter particles


  qi = p′ i − pi

spins of matter particles 

momenta of radiation quanta

Quantum Amplitudes and Radiation Observables



Quantum Amplitudes and Radiation Observables
Expansion in QFT vs in classical GR for 2-to-2 scattering
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Waveforms from amplitudes

At leading PM order KMOC formalism relates spectral waveform to integral of 5-point amplitude. 

fh(ω) =
1

64π3m1m2 ∫ dμℳcl
tree[p1 + w1, p2 + w2 → p1, p2, k]|k=ωn

dμ ≡ δ4(w1 + w2 − k)Πi=1,2[eibiwid4wiδ(uiwi)]
Integration measure

|ψ⟩in = ∫ Πi=1,2[dΦ(pi)fi(pi)eipibi] |p1p2⟩inThe rest is an exercise in wave function integration  and extracting the leading 1/|x| behaviour

-

�, h �

1S 3S

2S2 20S2

1S1 10S1

�

2S2 20S2

1S1 10S1

h

2

In fact, not full 5-point amplitude but just its certain residues are needed to calculate the integral! De Angelis, Novichkov, Gonzo 
[arXiv:2309.17429]  

pentagon topology itself. We refer to Refs. [30, 33, 35–37] for the full computation

of all master integrals.

The four topologies we consider, which we label with A, B, C and D are

A B C D (4.15)

Using the following momentum labeling for the internal edges

`+ p̄1 +
q1

2

�`+ p̄2 +
q2

2

`+ q1

`� q2

` (4.16)

the master integrals all belong to the following family of integrals,

ISi =
e✏�E

m̄1m̄2

Z
dD

`

i⇡D/2

1

[`2]a1 [2`·v̄1]a2 [(`+q1)2]a3 [(`�q2)2]a4 [�2`·v̄2]a5
. (4.17)

where Si = {a1, a2, a3, a4, a5} labels a set of indices. For the pentagon diagram itself,

we take ai = 1 for all i. To write this integral family, we have defined the velocities

v̄i = p̄i/m̄i and used the expansion of the propagators appearing in the diagram

from (4.16) in the eikonal limit, e.g.,

1

[(�`+p̄2+
1

2
q2)2 �m

2

2
]
=

1

m̄2

1

[�2`·v̄2]
� 1

m̄
2

2

`·(`� q2)

[2`·v̄2]2
+ . . . . (4.18)

We deliberately used square brackets to emphasize that the eikonal expansion holds

for any i" prescription, which can be inserted into the brackets.

To compute the waveshape Exp
k
, we have to sum over the contributions corre-

sponding to diagrams A, B, C and D from (4.15) (including the relevant +i"’s in all

propagators), and, additionally, the cut of diagram D. A cut through the massive

particles in the D topology allows for the graviton to be emitted before the cut, so

this term must be included by (4.11). In the eikonal limit, the on-shell delta function

of the cut propagator in topology D admits the following expansion,

�

h
(`+p̄2�1

2
q2)

2�m
2

2

i
=

� (2` · v̄2)
m̄2

+
`·(`�q2)

m̄
2

2

�
0 (2` · v̄2) +O

�
m̄

�3

2

�
, (4.19)

which is the analog of (4.18) for the propagators.

– 38 –

Calculation can be extended  to one-loop level 

Caron-Huot, Giroux, Hannesdottir, Mizera 
arXiv:2310.12199

2303.06211 
2303.06111 
2303.06112 
2303.07006



On-shell calculation of
gravitational amplitudes



Feynman rules and diagrams

Quantum Mechanics + Poincaré 
invariance, locality and unitarity 

QFT, fields Lagrangians 

Scattering Amplitudes: 
 ℳh1,...,hm(p1, . . . , pn)

Quantum Amplitudes and Classical Observables:  On-shell methods



Feynman rules and diagrams

Quantum Mechanics + Poincaré 
invariance, locality and unitarity 

QFT, fields Lagrangians 

Scattering Amplitudes: 
 ℳh1,...,hm(p1, . . . , pn)

Spinor 
helicity 

formalism

on-shell 

way

Quantum Amplitudes and Classical Observables:  On-shell methods
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Quantum Amplitudes and Classical Observables:  On-shell methods

Basis building block are on-shell 3-point amplitudes

|n⟩ ≡ λn

|n] ≡ λ̃n

pnσ = λnλ̃n

Pure general relativity



Spinning matter representing black holes
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⟨3 |p1 | ζ̃]2

MPl[3ζ̃]2
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Quantum Amplitudes and Classical Observables:  On-shell methods

Basis building block are on-shell 3-point amplitudes

|n⟩ ≡ λn

|n] ≡ λ̃n

pnσ = λnλ̃n



Spinning matter representing black holes
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Quantum Amplitudes and Classical Observables:  On-shell methods

Basis building block are on-shell 3-point amplitudes

|n⟩ ≡ λn

|n] ≡ λ̃n

pnσ = λnλ̃n

ℳcl[1Φ2Φ̄3−
h ] = −

⟨3 |p1 | ζ̃]2

MPl[3ζ̃]2
exp(+p3a1)

ℳcl[1Φ2Φ̄3+
h ] = −

⟨ζ |p1 |3]2

MPl⟨3ζ⟩2
exp(−p3a1)

Classical 
limit

Spin 
vector



Basis building block are on-shell 3-point amplitudes

h

h

h

h

2S1

1S1

�, h �

1S 3S

2S2 20S2

1S1 10S1

�

2S2 20S2

1S1 10S1

h

2

Build higher-point amplitudes  (up to contact terms)   
from their residues at kinematic poles in the complex plane
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Quantum Amplitudes and Classical Observables:  On-shell methods
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Quantum Amplitudes and Classical Observables:  gravitational waves
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Emitted power in gravitational waves
dPh

dΩ
= 2 |∂tWh |2

v = 0.9

v = 0.99

v = 0.1

v = 0.01

W(0)
h = −

m1m2

512π2M3
Plb( ̂u1n)2 γ2 − 1

1

z2 + 1
ℛ{ (ℱ−

1 (z))2 + (ℱ−
2 (z))2

γ( ̂u2n) − ( ̂u1n) + z(b̃n) + i z2 + 1(ṽn) }
|z=T1

+ (1 ↔ 2)

Wh = W(0)
h + W(1)

h + …Waveform in GR calculated as expansion in spin

At leading order 

ℱ−
1 (z) = ⟨n |( ̂u1 ̂u2 + 2γz ̂u1b̃ + zb̃ ̂u2 + 2iγ z2 + 1 ̂u1ṽ + i z2 + 1ṽ ̂u2) |n⟩

ℱ−
2 (z) = ⟨n |( ̂u1 − zb̃ − i z2 + 1ṽ) ̂u2 |n⟩
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h = − e−2iϕ m1m2
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γ2 − 1 γ = u1u2 =
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velocity suppression

For  in the rest frame of particle 2| t | ≲ b/v
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Emitted power 

Total emitted power 
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h =
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Quantum Amplitudes and Classical Observables:  gravitational waves
Wh = W(0)

h + W(1)
h + …Waveform in GR calculated as expansion in spin Ti ≡

t − bin
( ̂uin)b

̂ui =
ui

γ2 − 1 γ = u1u2 =
1

1 − v2

For  in the rest frame of particle 2| t | ≲ b/v

Emitted power 

Total emitted power 

W (1)
h (t) =

im1m2

512π2b2M3
Pl γ2 − 1( ̂u1n)2

d
dz ( 1

z2 + 1
ℛ{ 1

γ( ̂u2n) − ( ̂u1n) + z(b̃n) + i z2 + 1(ṽn) [
( (a1n)

( ̂u1n)
+ (a1 + a2)μ(γ ̂u2 − ̂u1 + zb̃ + i z2 + 1ṽ)μ)(Λ[ ̂u1, ̂u2] − Λ[zb̃ + i z2 + 1ṽ,2γ ̂u1 − ̂u2])

2

+( (a1n)
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2

−2(Λ[ ̂u1, ̂u2] − Λ[zb̃ + i z2 + 1ṽ,2γ ̂u1 − ̂u2])
× (γΛ[ ̂u1, a1] − Λ[ ̂u2, a1] − (γ2 − 1)Λ[ ̂u1, ̂u2, zb̃ + i z2 + 1ṽ, a1])]})

|z=T1

+ (1 ↔ 2) .

Λ[a, b] ≡ (λnaσbσ̄λn)

∂tW(1)
h = −e−2iϕ m1m2

64π2b3M3
Pl {i( ̂va2)[1 − ( ̂vn)2] + (b̂a2)[( ̂v × b̂ ⋅ ̂n) − i(b̂ ̂n)( ̂v ̂n)]
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h = 𝒪(v3)



Scalar radiation in
scalar-tensor theories



• SSGB,DCS = ∫ d4x −g[ M2
Pl

Λ2 (f(ϕ)𝒢 + f̃(ϕ)RR̃) +
1
2 (∂μϕ∂μϕ)]

Example: Scalar Gauss-Bonnet and Dynamical Chern Simons gravity

RμνρσRμνρσ − 4RμνRμν + R2 RμνρσR̃μνρσ , R̃μ
νρσ =

1
2

ε αβ
ρσ Rμ

ναβ

S = ∫ d4x
M2

Pl

2
−gR + SSGB,DCS[ϕ, gμν] + Sm[Ψm, 𝒜(ϕ)gμν]

SGR[gμν] → SST[gμν, ϕ]

Scalar-Tensor Theories

Gauss Bonnet invariant Chern Simons invariant

Experimental window:

α

Λ
≲ 0.22km ,

α̃
Λ

≲ 9.5km

Phys.Rev.D 107 (2023) 4, 044030 [Silva, Ghosh, Buonanno]
arXiv: 2406.13654 [Julié, Pompili, Buonanno]

Phys.Rev.Lett. 126 (2021) 18, 181101 
 [Silva, Holgado, Cárdenas-Avendaño, Yunes]


GW observations  
constrain them!

They consist of gravity theories with the introduction 
of an additional massless scalar degree of freedom

Scalar-tensor theories have long stood as 
popular direction to study extensions of GR

f(ϕ) = const + α
ϕ

MPl
+ O(ϕ2) f̃(ϕ) = const + α̃

ϕ
MPl

+ O(ϕ2)



Compact objects can acquire scalar hair in scalar-tensor theories 
This is the case for black holes in SGB and DCS 

Non-trivial 
configuration of  the 
field Scalar hair ϕ →

BH solution in ST theory

Far zone

x → ∞

“Dipole hair”“Monopole hair”

How can we model this behaviour with amplitudes?

ϕ =
ci

r
+

di

r2
+ . . .

Scalar-Tensor Theories: scalar hair

cn ∼ α
M4

Pl

Λ2m2
n



g̃μν = exp[C( ϕ
MPl

)]gμν

 3-point amplitudes for arbitrary spinning black holes:
exp[C( ϕ

MPl
)] ≈ 1 + c

ϕ
MPl

At the lagrangian level for any spin  
coupling can be obtained by mass redefinition: 

m → eC/2m

�

�, h

�, h

h

h

h

h

2S1

1S1

�

2S1

1S1

h h

1S1 10S1

2

We model the black hole as a point-particle  
interacting with the scalar field via an effective metric


(scalar conformal coupling) 

Scalar-Tensor Theories: scalar hair on shell

ℳ3,bos.[1Φn
,2Φ̄n

3ϕ] = −
cn

MPl

⟨21⟩Sn[21]Sn

m2Sn−2
n

ℳ3, ferm.[1Ψn
,2Ψ̄n

3ϕ] = −
cn

MPl

⟨21⟩Sn−1/2[21]Sn−1/2(⟨21⟩ + [21])
m2S−2

n

ℳcl[1Φn
,2Φ̄n

3ϕ] = −
cnm2

n

MPl

In the classical limit  
conformal coupling is spin-independent! 

Classical conformal coupling

maps to monopole charge


in scalar tensor theory 

AA, Marinellis  
2411.12909



Starting from 3-point amplitudes, generate 4- and 5-point amplitudes using unitarity:
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Scalar-Tensor Theories:  amplitudes
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One finds the pole part of the residue to all orders in spin, 

plus contact terms in systematic expansion in spin vector

RX = − ∑
i=h,ϕ

ℳcl
X[(p1 + w1)Φ1

(−p1)Φ̄1
(−k)ϕ(w2)i]ℳcl[(p2 + w2)Φ2

(−p2)Φ̄2
(−w2)i]

RU =
2

M3
Pl {

(kw2)[(p1p2)2 − 1
2 m2

1m2
2] + m2

2(p1k)2 − 2(p1p2)(p1k)(p2k)

(p1k)2
c1m2

1 cosh(w2a2)

+i
c1m2

1(p1p2)
(p1k)2

pμ
1 pν

2kρwσ
2 εμνρσ sinh(w2a2) − 2

c2m2
2(p1k)2cosh(w1a1) + c1m2

1(p2k)2cosh(w2a2)
w2

1

+
2iεμνρσ pμ

1 kνwρ
2

w2
1

[aσ
1(p1k)

c2m2
2 sinh(w1a1)

w1a1
+ pσ

2
c1m2

1(p2k)
p1k

sinh(w2a2)]}

R(0)
C =

C(0)
1 c2m2

1m2
2

M3
Pl

Part originating from contact terms in 4-point amplitude 

Part originating from pole terms in 4-point amplitude 

R(1)
C = − i

C(1)
1 c2m2

1m2
2

M3
Pl

(w1a1) R(2)
C = …

Scalar-Tensor Theories:  amplitudes



Rϕ ≡ out⟨ψ |ϕ(x) |ψ⟩out

RX(x) =
WX(t)
|x |

|x | → ∞ t ≡ x0 − |x |

Scalar-Tensor Theories:  scalar waveforms
Scalar radiation observable

Scalar waveform

fϕ(ω) = −
1

64π2m1m2 γ2 − 1 ∫
∞

−∞

dzeib1k+iz( ̂u1k)b

z2 + 1

1
2 {

R(w2 → ( ̂u1k)[γ ̂u2 − ̂u1 + zb̃+i z2 + 1ṽ]) + R(w2 → ( ̂u1k)[γ ̂u2 − ̂u1 + zb̃ − i z2 + 1ṽ])}
+(1 ↔ 2)

Using KMOC one can relate the scalar waveshape to the residues of the 5-point scalar emission amplitude   

Wϕ(t) = ∫
∞

−∞

dω
2π

e−iωtfϕ(ω)

From this, waveform is calculated via inverse Fourier transform

k = ωn



W(0)
ϕ = −

m1m2

32π2M3
Pl γ2 − 1( ̂u1n)2b

1

1 + T2
1

{ (γ2 − 1)[c1( ̂u2n)2 + c2( ̂u1n)2][γ( ̂u2n) − ( ̂u1n) + (b̃n)T1]
[ − ( ̂u1n) + γ( ̂u2n) + (b̃n)T1]2 + (υ̃n)2(1 + T2

1)

−
c1

2
( ̂u1n) + (2γ2 − 3)γ( ̂u2n) − (2γ2 − 1)(b̃n)T1

γ2 − 1
+

C(0)
1

2
c2( ̂u1n)} + (1 ↔ 2)

LO Scalar Waveforms-Spinless part:

Scalar-Tensor Theories:  scalar waveforms

0.1 1 10 100
10-7

10-6

10-5

10-4

0.001

t/b

P
� v = 10−3

v = 10−2

v = 10−1

v = 0.9

Ti ≡
t − bin
( ̂uin)b

̂ui =
ui

γ2 − 1
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Emitted power 

dPϕ

dΩ
= (∂tWϕ)2
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2 1m
2 2

b4
M

6 Pl

Contact term

in 4-point  matter-scalar 

scattering amplitude 



LO Scalar Waveforms-Spinless part

Scalar-Tensor Theories:  scalar waveforms
Ti ≡

t − bin
( ̂uin)b

̂ui =
ui

γ2 − 1
Wϕ = W(0)

ϕ + W(1)
ϕ + … γ = u1u2 =

1

1 − v2

Center-of-mass frame, non-relativistic limit  of small relative velocity v. 

PN expansion of the waveform independent of contact terms at this order 

W(0)
ϕ =

m1m2(c1 − c2)
64π2M3

Plb { −
( ̂v ̂n)

v
+ (b̂ ̂n)

t
b } + O(v)

P(0)
ϕ =

m2
1m2

2

3072π3M6
Plb4

(c1 − c2)2 + O(v)

Emitted power in the limit of of small velocity  

Kepler's  law

b−1 →
8πM2

Plv2

m1 + m2

P(0)
ϕ =

4πm2
1m2

2 M2
Pl(c1 − c2)2

3(m1 + m2)4
v8 + O(v9)

Agreement with existing 
classical results for SGB! 

 Phys.Rev.D 85 (2012) 064022, Phys.Rev.D 93 (2016) 
2, 029902  [Yagi, Stein, Yunes, Tanaka]


Class.Quant.Grav. 39 (2022) 3, 035002 [Shiralilou, 
Hinderer, Nissanke, Ortiz, Witek]

W(0)
ϕ = −

m1m2

32π2M3
Pl γ2 − 1( ̂u1n)2b

1

1 + T2
1

{ (γ2 − 1)[c1( ̂u2n)2 + c2( ̂u1n)2][γ( ̂u2n) − ( ̂u1n) + (b̃n)T1]
[ − ( ̂u1n) + γ( ̂u2n) + (b̃n)T1]2 + (υ̃n)2(1 + T2

1)

−
c1

2
( ̂u1n) + (2γ2 − 3)γ( ̂u2n) − (2γ2 − 1)(b̃n)T1

γ2 − 1
+

C(0)
1

2
c2( ̂u1n)} + (1 ↔ 2)

In particular, 
P(0)

ϕ

Ph(0)
∼

1
v2



P(0)
ϕ =

m2
1m2

2

3072π3M6
Plb4

(c1 − c2)2

+
m2

1m2
2

π3M6
Plb4 [ (c1 + c2)2

3840
+

(c1 + c2)(c1 − c2)
3840

m1 − m2

m1 + m2
+ (6 − η) (c1 − c2)2

7680

+
(c1 − c2)(m2c2C(0)

1 − m1c1C(0)
2 )

1536(m1 + m2)

−
(c1 − c2)2

1536
t2

b2 ]v2,

Scalar-Tensor Theories:  scalar waveforms
Comparison beyond leading PN order  for quasi-circular orders

Post-Newtonian Gravitational and Scalar Waves in Scalar-Gauss-Bonnet Gravity 22

6.2. Scalar mode
For the scalar field, the energy loss is evaluated from

Ės = c
3
R

2

32fiG

j
�̇2

d
2� . (60)

Since we have defined the lowest-order tensor flux term as a 0PN term, the lowest-order
piece of the scalar flux is a -1PN term, resulting from multiplying the -0.5 PN piece of
� by itself. We find the scalar energy flux to 0PN order to be
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3
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S≠

4 5
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6
+ O(c≠3)

J

.

(61)

In the above expression, there is no contribution to the flux at ≠0.5PN order because
the product of the ≠0.5PN and 0PN pieces of � has an odd number of n̂i. At 0 PN
order, we have (≠0.5PN) ≠ (+0.5PN), and 0PN ≠ 0PN contributions.

7. Orbit equations and waveforms in the time domain

Having the energy flux and the conserved energy at hand, we determine the evolution
of the orbital frequency and phase, which is needed to generate inspiral-waveform
templates. Such templates are important for parameter inference studies to search for
deviations from GR and quantify possible biases in source parameters that may mimic
beyond-GR e�ects.

In this section, we first present the time-domain evolution of tensor and scalar
waveforms for arbitrary GB coupling parameters but focusing on quasi-circular binary
systems. In Sec. 7.4, we assume the small coupling limit and compare our results for
scalar waveforms against the NR results of Ref. [54].

7.1. Dynamics of quasi-circular inspirals

Here, we focus on the dynamics of orbits that are quasi-circular when they enter the
sensitivity band of GW detectors. For such orbits, the only departure from circular
motion is induced by radiation reaction, which, as we saw earlier in Sec. 5, does not
explicitly appear in the equations of motion to 1PN order.

Amplitudes Classical Class.Quant.Grav. 39 (2022) 3, 035002 [Shiralilou, 
Hinderer, Nissanke, Ortiz, Witek]

higher PM 

irrelevant for quasi-circular orbits 

suppressed by more powers of distance 



W(1)
ϕ =

m1m2

32π2M3
Plb2( ̂u1n)2

∂
∂z ( 1

z2 + 1
Re{c1[z(ṽn) − i z2 + 1(b̃n)][ − ( ̂u1a2) + z(b̃a2) + i z2 + 1(ṽa2)]

× [ γ
γ2 − 1

−
( ̂u2n)

γ( ̂u2n) − ( ̂u1n) + z(b̃n) + i z2 + 1(ṽn) ] −
c2( ̂u1n)

γ( ̂u2n) − ( ̂u1n) + z(b̃n) + i z2 + 1(ṽn)

× [[i z2 + 1(b̃n) − z(ṽn)]( ̂u2a1) + [γ(ṽn) + i z2 + 1(γ( ̂u1n) − ̂u2n)](b̃a1) + [z( ̂u2n − γ( ̂u1n)) − γ(b̃n)](ṽa1)]
+

C(1)
1 c2

2 γ2 − 1 [( ̂u1n)[γ( ̂u2a1) + z(b̃a1)] − (a1n)]}) |z=T1
+ (1 ↔ 2)

Scalar-Tensor Theories:  scalar waveforms
Wϕ = W(0)

ϕ + W(1)
ϕ + …Using amplitudes it is straightforward to continue beyond linear order in spin

New contact term 

one more power  
of impact parameter 

ai ≡
Si

mi

W(1)
ϕ =

m1m2

32π2M3
Plb2 {[c2a1 − c1a2] ⋅ ̂v( ̂v × b̂ ⋅ ̂n) +

1
2 [c1C(1)

2 a2 − c2C(1)
1 a1] ⋅ b̂

+v[[c1a2 − c2a1] ⋅ [2b̂( ̂v × b̂ ⋅ ̂n) + ̂v × b̂(b̂ ̂n)] +
1
2 [c1C(1)

2 a2 − c2C(1)
1 a1] ⋅ ̂v] t

b }
+O(v2) .

P(1)
ϕ =

m2
1m2

2(c1 − c2)
768π3M6

Plb5
( ̂v × b̂) ⋅ [c1a2 − c2a1]v

Linear-in-spin correction to emitted power



LO Gravitational Waveforms-Spinless part:

Scalar-Tensor Theories:  gravitational waveforms
Wh = W(0)

h + W(1)
h + …

ΔW(0)
h = −

c1c2m1m2

512π2M3
Pl γ2 − 1( ̂u1n)2b

1

1 + T2
1

Re{
(λn[γ ̂u2σ + T1b̃σ + i T2

1 + 1υ̃σ] ̂u1σ̄λn)2

γ( ̂u2n) − ( ̂u1n) + T1(b̃n) + i T2
1 + 1(υ̃n) } + (1 ↔ 2) .
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LO Gravitational Waveforms-Spinless part:

ΔW(0)
h = −

c1c2m1m2

512π2M3
Pl γ2 − 1( ̂u1n)2b

1

1 + T2
1

Re{
(λn[γ ̂u2σ + T1b̃σ + i T2

1 + 1υ̃σ] ̂u1σ̄λn)2

γ( ̂u2n) − ( ̂u1n) + T1(b̃n) + i T2
1 + 1(υ̃n) } + (1 ↔ 2) .

dPh

dΩ 𝒪(a0)
∼

v2

b4
dPh

dΩ 𝒪(a0)
∼ v10

For closed orbits Suppression compared 
to scalar radiation 
in agreement with 
classical literature
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Scalar-Tensor Theories:  gravitational waveforms

In fact, at leading PN order emitted power rescaled compared to GR by factor  1 + c1c2

Wh = W(0)
h + W(1)

h + …



• Classical observables often can be efficiently calculated using quantum 
amplitudes in the framework of the KMOC formalism 


• One very fruitful application of this formalism is to calculate corrections 
to the gravitational potential and gravitational waveforms from systems 
of compact objects in general relativity


• The formalism can be readily extended to scalar-tensor theories of 
gravity, where both gravitational and scalar radiation is present 


• Results for emitted power in gravitational and scalar waves found in the 
classical literature are reproduced in the KMOC approach. We also 
derive novel results at higher PN and spin orders 

Summary


