

Latest measurement of $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$ by the NA62 experiment

Radoslav Marchevski (EPFL) on behalf of the NA62 collaboration

CPPM Seminar, 18 November 2024, Marseille, France

radoslav.marchevski@cern.ch radoslav.marchevski@epfl.ch

Outline

- The golden modes $K \to \pi \nu \bar{\nu}$: Standard Model and Beyond
- NA62: The K^+ factory at the CERN north area
- NA62 Detector, Upgrades & Performance
- $K \to \pi \nu \bar{\nu}$: Analysis of Run 2 data
- $K \rightarrow \pi \nu \bar{\nu}$: First results with Run 2 data

The golden modes $K \rightarrow \pi \nu \bar{\nu}$: Standard Model and Beyond

Kaons: tools for discovering the Standard Model NA62

"The discovery of hadrons with the internal quantum number "strangeness" marks the beginning of a most exciting epoch in particle physics that even now, fifty years later, has not yet found its conclusion ... by and large experiments have driven the development, and that **major discoveries came unexpectedly** or even against expectations expressed by theorists." Bigi & Sanda (2016)

- Rochester and Butler discovered "forked tracks of a very striking character"
- These forked tracks *"represent the spontaneous transformation of a new type of uncharged particle into two lighter charged particles"* PFL
 Radoslav Marchevski

eks of a very striking character" ous transformation of a new type of une

NA62 🗛 Kaons: tools for discovering the Standard Model

$\tau - \Theta$ puzzle

- Observed $\Theta^+ \to \pi^+ \pi^0$ and $\tau^+ \to \pi^+ \pi^+ \pi^-$ decays have final states with opposite parity
- No difference between the masses and lifetimes of the Θ^+ and τ^+ particles \rightarrow two decays of the same particle? • The puzzle was resolved after discovering that weak interactions violate parity (P)
 - Lee and Yang noticed that P was untested in the weak interactions [Phys. Rev. 104, 254 (1956)]
 - P violation of the weak interaction was established by Wu a few months later [Phys Rev. 105, 1413 (1957)] \rightarrow asymmetry of the angular distribution of electrons from β decays of polarized Co^{60} nuclei

<u>Charge Parity (CP) violation</u>

- P violated but surely CP must be conserved: strong and EM interactions conserve both P and CP • CP violation in mixing observed by Cronin and Fitch [PRL 13, 138 (1964)] Nobel prize 1980 Nobel prize 2008 • Complex plate in quark-mixing matrix governing flavor-changing transitions [PTP 49, 2, 652-657 (1973)]

 - Direct CP violation in $K^0 \rightarrow \pi \pi$ decays observed 35 years laters [PLB 465, 335-348 (1999)], [PRL 83, 22 (1999)]

Quark mixing in the SM: CKM matrix

experimentally hierarchical

Cabibbo-Kobayashi0Maskawa (CKM) matrix

- Complex unitary 3x3 matrix governing flavor-changing weak interactions
 - 4 physical parameters: 3 "angles" + 1 complex phase (source of CP violation)
 - the vanishing combinations can be interpreted geometrically as triangles in the complex plane

Unitarity $\rightarrow \sum_{i} V_{ij} V_{ik}^* = \delta_{jk}$ and $\sum_{i} V_{ij} V_{kj}^* = \delta_{ik}$

Wolfenstein parametrization: $\lambda \sim 0.22$

 $V_{us}^*V_{ud} \sim O(\lambda)$

Example: $s \rightarrow d$ unitarity triangle

$K \rightarrow \pi \nu \bar{\nu}$: Precision test of the Standard Model

- $\mathscr{B}(K \to \pi \nu \bar{\nu})$ highly suppressed in SM
- Theoretically clean ⇒ high precision SM predictions
 - dominated by short distance dynamics

	Mode	SM Branching Ratio [1]	SM Branching Ratio [2]	Experimental Status
	$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6 \pm 4.0) \times 10^{-11}$ NA62
	$K_L \to \pi^0 \nu \bar{\nu}$	$(2.94 \pm 0.15) \times 10^{-11}$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 2 \times 10^{-9}$ Koto (20)
Radoslav Marchevsk	į	^Recent SM calculations [1: <u>Buras et al. EF</u> (Differences in SM calculations from choi	PJC 82 (2022) 7, 615][2:D'Ambrosio et al. JHE ice of CKM parameters: see [Eur.Phys.J.C 84	<u>P 09 (2022) 148]</u> (2024) 4, 377])

• GIM mechanism & maximum CKM suppression $s \to d$ transition: $\sim \frac{m_t}{m_W} \left| V_{ts}^* V_{td} \right|$

hadronic matrix element extracted from $\mathscr{B}(K \to \pi^0 \mathscr{C}^+ \nu_{\mathscr{C}})$ decays via isospin rotation

$K \rightarrow \pi \nu \bar{\nu}$: Beyond the Standard Model

- Correlations between BSM contributions to BRs of K^+ and K_L modes [JHEP 11 (2015) 166].
 - Must measure both to discriminate between BSM scenarios.
- Correlations with other observables (ε'/ε , ΔM_R , B-decays) [JHEP 12 (2020) 097][PLB 809 (2020) 135769].
- Leptoquarks [EPJ.C 82 (2022) 4, 320], Interplay between CC and FCNC [JHEP 07 (2023) 029], NP in neutrino sector [EPJ.C 84 (2024) 7, 680], additional scalar/tensor contributions [JHEP 12 (2020) 186][arXiv:2405.06742] ...
- **Green:** CKM-like flavour structure
 - Models with Minimal Flavour Violation
- Blue: new flavour-violating interactions where LH or **RH** currents dominate
 - Z' models with pure LH/RH couplings
- **Red:** general NP models without above constraints
- **Grossman-Nir Bound:** model-independent relation [PLB 398 (1997) 163-168]

NA62: The K^+ factory at the CERN north area

The NA62 Experiment at CERN

~200 collaborators from ~30 institutions.

Radoslav Marchevski

- - Rare K^+ decays (e.g. $K^+ \to \pi^+ \gamma \gamma$ [PLB 850 (2024) 138513])

$K^+ \rightarrow \pi^+ \nu \bar{\nu} \lambda \lambda K$ at NA62

NA62 Strategy:

- Tag K^+ and measure momentum.
- Identify π^+ and measure momentum.
- Match K^+ and π^+ in time & form vertex.
 - Determine $m_{miss}^2 = (P_K P_\pi)^2$
- Reject any additional activity.

$$m_{miss}^{2} = (P_{K^{+}} - P_{\pi^{+}})^{2}$$

$$P_{\pi^{+}}$$

$$P_{K^{+}}$$

$$P_{\nu}$$

$$P_{\nu}$$

$$P_{\nu}$$

$$P_{\nu}$$

$$P_{\nu}$$

$$P_{\nu}$$

NA62 Performance Keystones:

- $\mathcal{O}(100) \, ps$ timing between detectors
- $\mathcal{O}(10^4)$ background suppression from kinematics
- > 10^7 muon rejection
- > 10⁷ rejection of π^0 from $K^+ \rightarrow \pi^+ \pi^0$ decays

Decay mode	Branching Ratio [PDG]
$K^+ \to \mu^+ \nu_\mu$	$(63.56 \pm 0.11)\%$
$K^+ \to \pi^+ \pi^0$	$(20.67 \pm 0.08)\%$
$K^+ \to \pi^+ \pi^+ \pi^-$	$(5.583 \pm 0.024)\%$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-10}$

 $K^+ \to \pi^+ \nu \bar{\nu}$

 $(8.60 \pm 0.42) \times 10^{-11}$ Buras et al. EPJC 82 (2022) 7, 615

Kinematic constraints & signal regions

Radoslav Marchevski

$\mathcal{O}(10^4)$ background suppression from kinematics

 π^+ momentum range: 15–45 GeV/c

Data-taking year	[Reference]	Λ
2016	[PLB 791 (2019) 156]	0.152
2017	$[JHEP \ 11 \ (2020) \ 042]$	1.46 :
2018	$[JHEP \ 06 \ (2021) \ 093]$	5.42
2016 - 18	[JHEP 06 (2021) 093]	7.03

Statistical combination:

Background-only hypothesis: $p = 3.4 \times 10^{-4} \Rightarrow$ significance= 3.4σ .

 $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4} |_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11} \text{ at } 68 \% \text{ CL}$

NA62 Detector, Upgrades & Performance

- Designed & optimised for study of $K^+ \to \pi^+ \nu \bar{\nu}$:
 - Particle tracking: beam particle (GTK) & downstream tracks (STRAW)

• PID: K^+ - KTAG, π^+ - RICH, Calorimeters (LKr, MUV1,2), MUV3 (μ detector) • Comprehensive veto systems: CHANTI (beam interactions), LAV, LKr, IRC, SAC (γ)

Particle ID performance : 2021–22 data

- Use BDT classifier for LKr & MUV1,2
- + MUV3 (fast μ^+ detector)

Designed to distinguish between π^{+}/μ^{+} with 15 – 35 GeV/*c*

Comprehensive photon veto system: 2021–22 NA62

• Probability of $K^+ \to \pi^+ \pi^0$, $\pi^0 \to \gamma \gamma$ events passing all photon veto conditions:

 $\eta_{\pi^0} =$

• Meets target: combined γ/π^0 rejection of $\mathcal{O}(10^8)$

-	•	•	•	-	-				•		-	•	-	•	•				•	-	
•	•	•	•	•	•	•	•	•	•	į	•	•	•	•	•	•	•	•	•	-	
•	•	•	•	•	•	•	•	•	•	i	•	-	•	•	-	•	•	•	•	•	
•	•	•	•	•	-	•	•	•	•	÷	-	•	•	•	•	•	•	•	•	-	
•	•	•	•			•	•	•	•	Ì	-	•		•	•	•	•	•	•	-	
										:											
•	•	•	•	•	•	•	•	•	•	í	•	•		•	•	•	•	•	•	•	
•	-					-	-	-		į	•	-		-	-	-		-	-	-	
-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	
•	-	-	•	•	•	-	-	-	•	-	•	•	•	-	-	-	-	-	•	•	1
•	•	•	•	•	•	•	•	•	•	2	•	•	•	•	•	•	•	•	•	•	ļ
•	:	:	:	:	:		:	:	:	ļ			:				:	:	:	:	
	•	•								ì										•	
-										į											
										Ì											
-	•	•	-	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	
-	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
-	•	•	-	-		•	-	-	-		-	-	-		•	•	-	-		-	-
		(2							/		/				-	

Upgrading NA62

- 2016–18 analysis proved NA62 technique
- Limitation: tight cuts to reject backgrounds \Rightarrow reduces signal efficiency
- To improve: need new tools to control background

Upgrading NA62

- 2016–18 analysis proved NA62 technique
- Limitation: tight cuts to reject backgrounds \Rightarrow reduces signal efficiency
- To improve: need new tools to control background

Background	N(exp) 2018 (S2)	
Upstream	$2.76^{+0.90}_{-0.70}$	
$K^+ \to \pi^+ \pi^0$	0.52 ± 0.05	
$K^+ \to \mu^+ \nu$	0.45 ± 0.06	
$K^+ \to \pi^+ \pi^- e^+ \nu$	0.41 ± 0.10	
$K^+ \to \pi^+ \pi^+ \pi^-$	0.17 ± 0.08	
Total	$4.31^{+0.91}_{-0.72}$	

 K^+ decays in decay tank

Upstream background

Largest backgrounds: 1. Upstream 2. $K^+ \rightarrow \pi^+ \pi^0$

Veto by detecting previously missed particles...

Mid 2018 - installed TCX Collimator Much improved shielding - blocking almost all upstream decay paths. Sketch only Bend6 Bend4A Bend4 Bend5 GTK2 π GTK1 **KTAG** Scraper Signal in-time with true K^+ which decays upstream. Signal in-time with pileup beam particle (π^+) which does not leave beam pipe

Summary of NA62 upgrades

- New detectors, installed during LS2:

 - 4th GTK (Kaon beam tracker) & rearrange GTK achromat (GTK2 upstream of scraper). • New upstream veto (VetoCounter) & veto hodoscope (ANTIO) upstream of decay volume. • Additional veto detector (HASC2) at end of beam-line.
- Intensity increased by $\sim 35 \%$ with respect to 2018 [450 $\rightarrow 600$ MHz]. • Improvements to the trigger configuration.

New detectors installed in 2021:

Radoslav Marchevski

• Average beam intensity increased.

• NA62 "Full intensity" with 4.8s spill = 600 MHz

2021–2022 data : Signal Sensitivity

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Analysis of Run 2 data

Analysis strategy

Triggers:

- Minimum Bias: $K^+ \rightarrow \mu^+ \nu$
- Normalisation: $K^+ \rightarrow \pi^+ \pi^0$
- Signal: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ candidates

Selection:

- Normalisation $K^+ \rightarrow \pi^+ \pi^0$: 1 downstream track (only); identified as π^+ ; $K^+ \pi^+$ matching (space & time); upstream vetos.
- Signal $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ candidates: same as normalisation selection + full photon and detector multiplicity cuts (reject all extra activity).

Radoslav Marchevski

• Efficiency improved (+10%) and mistagging probability maintained.

Number of expected SM events:

(For comparison to previous results use $\mathscr{B}_{\pi\nu\bar{\nu}}^{SM} = 8.4 \times 10^{-11}$ [JHEP 11 (2015) 166], but results are independent of this choice)

Single event sensitivity:

(Branching ratio corresponding to expectation of 1 event)

Acceptances

Analysis is performed in (5 GeV/c) bins of momentum:

- Increased selection efficiencies.
 - New K-pi matching technique.
 - Re-tuned vertex conditions.
 - Relaxation of some vetos.
- Improved precision (plus improved) systematic uncertainty evaluation).

Radoslav Marchevski

- New: several components in both normalisation & signal triggers: partial cancellation.
- Old: in 2016–18 data normalise with fully independent min bias trigger (no cancellation).
- Improved precision by factor 3 with reduced systematic uncertainty.

Random veto

 ε_{RV} is independent of track momentum (related to additional activity only)

Radoslav Marchevski

- ε_{RV} = Random Veto Efficiency:
 - $1 \varepsilon_{RV}$ = Probability of rejecting a signal event due to additional activity.
- Balance:
 - Strict vetos \Rightarrow lower efficiency
 - Loose vetos \Rightarrow higher background
- Operational intensity higher but re-tuning vetos means ε_{RV} is comparable:

 $\varepsilon_{RV}(\text{new}, \lambda_{21-22}) \approx 600 \text{ MHz}) = (63.6 \pm 0.6) \%$ 1200 $\varepsilon_{RV}(\text{old}, \overline{\lambda_{2018}} \approx 400 \text{ MHz}) = (66 \pm 1) \%$

Signal sensitivity result					
$N_K = \frac{\Lambda}{\mathscr{R}}$	$\frac{V_{\pi\pi}D_0}{\mathcal{B}_{\pi\pi}A_{\pi\pi}}\qquad \qquad \mathcal{B}_{SES} = \frac{1}{N_K \varepsilon_{RV} \varepsilon_{tr}}$	igA _{πνī}			
$N_{\pi\pi}$	Normalisation $K^+ \to \pi^+ \pi^0$				
$A_{\pi\pi}$	Normalisation acceptance	(13.			
N_K	Effective K^+ decays				
$A_{\pi u ar u}$	Signal acceptance	(
$arepsilon_{trig}$	Trigger efficiency	(8			
$arepsilon_{RV}$	Random veto efficiency	(
\mathcal{B}_{SES}	Single event sensitivity	(0.84)			

- Significant improvement in SES uncertainty:
 - old: 6.3% -> new: 3.5%. Due to:
 - trigger efficiency cancellations
 - improved procedures for evaluation of acceptances and ε_{RV}

IS

• Display integrals (15–45 GeV/c, 2021+22) for summary tables. * Acceptances evaluated at 0 intensity.

 2.0×10^{8} $.410 \pm 0.005)\%$ 2.9×10^{12} $(7.6 \pm 0.2)\%$ $85.9 \pm 1.4)\%$ $63.6 \pm 0.6)\%$ $\pm 0.03) \times 10^{-11}$

 $N_{\pi\nu\bar{\nu}}^{exp} = \frac{\mathscr{B}_{\pi\nu\bar{\nu}}^{SM}}{\mathscr{B}_{SES}}$ Assuming $\mathscr{B}_{\pi\nu\bar{\nu}}^{SM} = 8.4 \times 10^{-11}$: **2021–22:** $N_{\pi\nu\bar{\nu}} = 10.00 \pm 0.34$ c.f. 2016–18 : $N_{\pi\nu\bar{\nu}} = 10.01 \pm 0.42$ **Double expected signal** by including 21–22 data.

Optimum NA62 intensity

Selected signal yield vs intensity

Radoslav Marchevski

- Saturation of expected signal yield with intensity. Mainly due to:
 - Paralyzable effects from TDAQ dead time and trigger veto windows.
 - Offline selection, due to veto conditions.
- Main sources of uncertainty for model:
 - Online time-dependent mis-calibrations.
 - Fit uncertainty.
- From August 2023 operate at optimal intensity (~75% of full) to maximise $\pi\nu\nu$ sensitivity
 - Maximise signal yield
 - lower expected background
 - Higher DAQ efficiency

1000

• Studies of **2021–22 data** at high intensity were crucial to establish optimal intensity.

2021 – 2022 data : Background Evaluation

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Analysis of Run 2 data

Background regions & background estimations

Radiative decays: $K^+ \rightarrow \pi^+ \pi^0 \gamma$ & $K^+ \rightarrow \mu^+ \nu \gamma$

• $K^+ \rightarrow \pi^+ \pi^0 \gamma$: included with "kinematic tails" estimation.

- Suppression: photon vetos, rejection with additional γ is 30x stronger. • Estimation: MC + measured single photon rejection efficiency : $N_{bg}(K^+ \rightarrow \pi^+ \pi^0 \gamma) = 0.07 \pm 0.01$ • Validation: m_{miss}^2 control regions (CR1,2 - see later)
- $K^+ \rightarrow \mu^+ \nu \gamma$: not included in "kinematic tails" estimation if γ overlaps μ^+ at LKr (leading to misID as π^+) • Suppression: based on $(P_K - P_\mu - P_\gamma)^2$ and E_γ with γ = LKr cluster (mis)associated to muon.
- - Necessary for 2021-22 data, since Calorimetric PID degraded at higher intensities.
 - Estimation: min. Bias data control sample with signal in MUV3 : $N_{bg}(K^+ \rightarrow \mu^+ \nu \gamma) = 0.8 \pm 0.4$
 - Validation: data sample without $K^+ \rightarrow \mu^+ \nu \gamma$ veto and PID = "less pion-like" (Calo BDT bins below π^+ bin).

Other backgrounds • $K^+ \rightarrow \pi^+ \pi^- e^+ \nu (K_{\rho 4})$

Effective Random veto & trigger efficience
of K+

$$N_{bg}(K^+ \to \pi^+ \pi^- e^+ \nu) = N_K \varepsilon_{RV} \varepsilon_{trig} \mathscr{B}_{K_{e4}} A$$

Branching ratio of K_{e4}
(from PDG)

- Evaluated with simulations.
- Negligible contributions to total backs

• No clean control samples for K_{e4} in data: use 2×10^9 simulated decays.

ground.
$$N_{bg}(K^+ \to \pi^0 \ell^+ \nu) < 1 \times 10^{-3}$$

Upstream background evaluation $N_{bg} = \sum N_i f_{cda} P_i^{match}$ **Upstream Reference Sample:** signal selection but invert CDA cut (CDA>4mm) f_{cda} Scaling factor : bad cda -> good cda Probability to pass $K^+ - \pi^+$ matching match

Calculate using bins (i) of $(\Delta T_+, N_{GTK})$ [Updated to fully data-driven procedure]

$$N = 51$$
 $f_{CDA} = 0.20 \pm 0.03$ $< P_{match}$

$$N_{bg}$$
(Upstream) = 7.4^{+2.1}_{-1.8}

Upstream background validation

- Invert & loosen upstream vetos to enrich with different mechanisms:
 - Interaction-enriched: Val1,2,7,8
 - Accidental-enriched: Val3,4,5,6,9,10.
 - All independent.
- Expectations and observations are in good agreement.
- Number of events rejected by VetoCounter:
 - (i.e. events in signal region with associated VC signal)
 - $N_{exp}^{VC \, rej.} = 6.9 \pm 1.4$, $N_{obs}^{VC \, rej.} = 9$
- VetoCounter is essential to control upstream background.

events

Numbe

Summary of expectations

Backgrounds

		_
$K^+ \to \pi^+ \pi^0(\gamma)$	0.83 ± 0.05]
$K^+ \to \pi^+ \pi^0$	0.76 ± 0.04	\mathscr{B}_{SE}
$K^+ \to \pi^+ \pi^0 \gamma$	0.07 ± 0.01	
$K^+ \to \mu^+ \nu(\gamma)$	1.70 ± 0.47	Assumi
$K^+ \to \mu^+ \nu$	0.87 ± 0.19	2021-
$K^+ \to \mu^+ \nu \gamma$	0.82 ± 0.43	c.f. 20
$K^+ \to \pi^+ \pi^+ \pi^-$	0.11 ± 0.03	
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.89\substack{+0.34 \\ -0.28}$	
$K^+ \to \pi^0 \ell^+ \nu$	< 0.001	• $N_{\pi\nu\bar{\nu}}^{\circ}$
$K^+ \to \pi^+ \gamma \gamma$	0.01 ± 0.01	• C.f.
Upstream	$7.4^{+2.1}_{-1.8}$	 Sensit
Total	$11.0^{+2.1}_{-1.9}$	Sim Sim Sam

Radoslav Marchevski

per SPS spill: 2.5×10^{-5} in 2022

 1.7×10^{-5} in 2018. \Rightarrow signal yield increased by 50%.

ivity for BR $\sim \sqrt{S + B/S} = 0.5$

nilar but improved with respect to 2018 analysis for ne amount of data.

Control regions

• Good agreement in control regions validates background expectations.

2021 – 22 data

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: First results with Run 2 data 2021 - 2022 data

• Measure $\mathscr{B}_{\pi\nu\bar{\nu}}$ and 68% (1 σ) confidence interval • Use 6 (momentum bin) categories using a profile likelihood ratio test statistic $q(\theta)$. After fit

Evaluate statistical-only component by repeating procedure assuming exact knowledge of signal and background expectations.

Combining NA62 results: 2016–22

• Integrating 2016–22 data: $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$.

Combining NA62 results: 2016–22

- Integrating 2016–22 data: $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$.

Radoslav Marchevski

Results in context

BNL E787/E949 experiment [Phys.Rev.D 79 (2009) 092004]

 $\mathscr{B}_{\pi\nu\bar{\nu}}^{16-18} = (10.6^{+4.1}_{-3.5}) \times 10^{-11}$ [JHEP 06 (2021) 093] $\mathscr{B}_{\pi\nu\bar{\nu}}^{21-22} = (16.0^{+5.0}_{-4.5}) \times 10^{-11}$ $\mathscr{B}_{\pi\nu\bar{\nu}}^{16-22} = (13.0^{+3.3}_{-2.9}) \times 10^{-11}$

- NA62 results are consistent
- Central value moved up (now $1.5-1.7\sigma$ above SM)
- Fractional uncertainty decreased: 40% to 25%
- Bkg-only hypothesis rejected with significance Z>5

Results in context

- Fractional uncertainty: 25%
- Bkg-only hypothesis rejected with significance Z>5
- Observation of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay with BR consistent with SM prediction, within 1.7σ
 - Need full NA62 data-set to clarify SM agreement or tension

 10^{-8}

 10^{-10}

 10^{-11}

KOTO preliminary: [Eur.Phys.J.C 84 (2024) 4, 377]

Conclusions

- New study of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay using NA62 2021–22 dataset:
 - Improved signal yield per SPS spill by 50%.
 - $N_{bg} = 11.0^{+2.1}_{-1.9}$, $N_{obs} = 31$

- Combining with 2016–18 data for full 2016–22 results:
 - $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$ (using 9+6 categories for BR extraction)

- Background-only hypothesis rejected with significance Z>5.
- First observation of $K^+ \to \pi^+ \nu \bar{\nu}$ decay: BR consistent with SM prediction within 1.7 σ
 - Need full NA62 data-set to clarify SM agreement or tension.

• $\mathscr{B}_{21-22}(K^+ \to \pi^+ \nu \bar{\nu}) = (16.0^{+5.0}_{-4.5}) \times 10^{-11} = (16.0 (^{+4.8}_{-4.2})_{\text{stat}} [^{+1.4}_{-1.3}]_{\text{svst}}) \times 10^{-11}$

• $\mathscr{B}_{16-22}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.0^{+3.3}_{-2.9}) \times 10^{-11} = (13.0 \left(^{+3.0}_{-2.7}\right)_{\text{stat}} \begin{bmatrix} +1.3\\ -1.2 \end{bmatrix}_{\text{syst}}) \times 10^{-11}$

2023–LS3 data-set collection & analysis in progress...

Cedar & KTAG : K⁺ tagging with threshold Cherenkov counter NA62

New Cedar-H: installed in 2023

- $(39 \times 10^{-3} X_0)$.
- New CEDAR-H filled with H_2 at 3.8 bar:
 - Reduces material to $7.3 \times 10^{-3} X_0$: reducing multiple scattering.
- But new optics required to account for different optical properties of H_2 . • Successful test beam in 2022 (at CERN, H6) and installation in NA62 in early 2023.

Arbitrary scale

10⁻²

10⁻³

10⁻⁴

10-5

- Cedar-H Performance at NA62:
 - >99.5% efficiency for 5-fold coincidence.
 - π^+ mistag probability: 10^{-4}
 - ~65ps time resolution
 - 30% reduction in elastically scattered beam particles.

[JINST 19 (2024) 05, P05005] More info: [Kenworthy, PM2024]

• CEDAR-W filled with N_2 at 1.7 bar was biggest contributor to material in beam line

Bayesian classifier for $K^+ - \pi^+$ matching

- Inputs: spatial (CDA) & time (ΔT_{+}) matching, intensity/pileup (N_{GTK}) [prior]
 - Models for PDFs/Prior from $K^+ \rightarrow \pi^+ \pi^- \pi^-$ data.

Example of selection update

- Use likelihoods of kaons (K) and pileup (P) • Likelihood ratio used to select true match when $N_{GTK} > 1$

- **Output:** posterior probability of GTK track = true K^+ • Efficiency improved (+10%) and mistagging probability maintained.

Kinematic regions

Radoslav Marchevski

• Signal regions:

• Control regions:

• Used to validate background predictions.

• Background regions:

 Used as "reference samples" for some background estimates.

- momentum μ^+ ($p \gtrsim 35 \, \text{GeV}/c$).

- (i.e. towards signal regions).

Background evaluation: $K^+ \rightarrow \mu^+ \nu \gamma$

- - Not applying Calorimetric BDT classifier and a signal in MUV3.

Not included in kinematic tails calculation because the tails sample imposes Calorimetric PID= μ^+ , while here there is misID of $\mu^+\gamma \Rightarrow \pi^+$.

• Evaluate background expectation using $\mu\nu\gamma$ control sample from MinimumBias (MB) trigger.

- Kinematically select $K^+ \rightarrow \mu^+ \nu \gamma$ events: $m_{miss}^2(K_{\mu 2\gamma}) = (P_K P_\mu P_\gamma)^2$
 - P_K : 4-momentum of K^+ from GTK (as normal)
 - P_{μ} : 4-momentum of track with μ^+ mass hypothesis.
 - P_{γ} : reconstructed from energy (subtracting MIP energy deposit) and position of LKr cluster (and position of K^+ - μ^+ vertex).

- and MC.
- 0.4% signal loss.

- Calorimetric PID degraded:
 - - Training of BDT classifier.

• Higher intensity in 2021–22 data (in particular, affects MUV1,2).

Upstream background evaluation $N_{bg} = \sum N_i f_{cda} P_i^{match}$ **Upstream Reference Sample:** signal selection but invert CDA cut (CDA>4mm) fcda Scaling factor : bad cda -> good cda Probability to pass $K^+ - \pi^+$ matching match

Calculate using bins (i) of $(\Delta T_+, N_{GTK})$ [Updated to fully data-driven procedure]

$$N = 51$$
 $f_{CDA} = 0.20 \pm 0.03$ $< P_{match}$

$$N_{bg}$$
(Upstream) = 7.4^{+2.1}_{-1.8}

• Experimental measurements:

- Camerini et al. [PRL 23 (1969) 326-329]
- Klems et al. [PRD 4 (1971) 66-80]
- Ljung et al. [PRD 8 (1973) 1307-1330]
- Cable et al. [PRD 8 (1973) 3807-3812]
- Asano et al. [PLB 107 (1981) 159]
- E787 :
 - [PRL 64 (1990) 21-24]
 - [PRL 70 (1993) 2521-2524]
 - [PRL 76 (1996) 1421-1424]
 - [PRL 79 (1997) 2204-2207]
 - [PRL 84 (2000) 3768-3770]
 - [PRL 88 (2002) 041803]
- E949 (+E787)
 - [PRL 93 (2004) 031801]
 - [PRL 101 (2008) 191802]
- NA62:
 - 2016 data: [PLB 791 (2019) 156]
 - 2016+17 data: [JHEP 11 (2020) 042]
 - 2016–18 data: [JHEP 06 (2021) 093]
 - 2016–22 data : this result.
- Theory:
 - [Phys.Rev. 163 (1967) 1430-1440]
 - [PRD 10 (1974) 897]
 - [Prog.Theor.Phys. 65 (1981)]
 - [PLB 133 (1983) 443-448]
 - [PLB 192 (1987) 201-206]
 - [Nucl.Phys.B 304 (1988) 205-235]
 - [PRD 54 (1996) 6782-6789]
 - [PRD 76 (2007) 034017]
 - [PRD 78 (2008) 034006]
 - [PRD 83 (2011) 034030]
 - [JHEP 11 (2015) 033]
 - [JHEP 09 (2022) 148]

- Located at J-Park 30 GeV main ring.

Results of the 2021 data analysis

Black: observed Red: expected BG Contour: signal MC

We will submit the paper on this result soon.

Single Event Sensitivity =

 $(9.26 \pm 0.03_{\text{stat}} \pm 0.75_{\text{syst}}) \times 10^{-10}$

 $N_{\text{observed}} = 0$

BR(K_L $\rightarrow \pi^{0}vv$)<2.1×10⁻⁹ (90% C.L.)

Obtained the world best limit.

•
$$(K^+ \to \pi^+ \pi^0, \pi^0 \to \text{invisible})$$

[JHEP 02 (2021) 201]

• $K^+ \rightarrow \pi^+ \pi^0$, π [prelim. Spring

- $K^+ \rightarrow \pi^+ \gamma \gamma$ [PLB 850 (2024) 138513
- Tagged neutrino [prelim. 2023]

•
$$K^+ \rightarrow$$

• $K^+ \rightarrow$
[PLB 8
• $K^+ \rightarrow$
• $K^+ \rightarrow$
(2021)

physics programme

Forbidden Decays

$$e^0 \rightarrow e^+e^-$$

2024]

 $\pi^0 \pi \mu e$ [prelim. Spring 2024] $(\pi^0)\pi^-e^+e^+$ 30 (2022) 137172] $\mu^{-}\nu e^{+}e^{+}$ [PLB838 (2023) 137679] $\pi\mu e$, $\pi^0 \rightarrow \mu^- e^+$ [PRL 127] 13, 131802

- Beam dump dark photon searches:
 - $A' \rightarrow \ell^+ \ell^-$ [PRL 133] (2024) 11, 111802 [JHEP 09 (2023) 035]

Exotics

• $A' \rightarrow$ hadrons [prelim. Spring 2024]

