CMB* Spectral Distortions and Their Synergies

Jens Chluba

CMB-France # 6 @ IHP, Paris

December 18th 2024

ROYAL SOCIETY

The University of Manchester

MANCHESTER

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

 $T_0 = 2.725 \pm 0.001 \,\mathrm{K}$ $|y| \le 1.5 \times 10^{-5}$ $|\mu| \le 9 \times 10^{-5}$

Mather et al., 1994, ApJ, 420, 439 Fixsen et al., 1996, ApJ, 473, 576 Fixsen, 2003, ApJ, 594, 67 Fixsen, 2009, ApJ, 707, 916

SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND

Blackbody spectrum to very high precision

CosmoTherm: a (new) flexible thermalization code

- Solve the thermalization problem for a wide range of energy release histories
- several scenarios already implemented (decaying particles, damping of acoustic modes)
- first explicit solution of time-dependent energy release scenarios
- open source code
 - will soon be available at www.Chluba.de/CosmoTherm/
- Main reference: JC & Sunyaev, MNRAS, 2012 (arXiv:1109.6552)

Average ACDM spectral distortions

Voyage 2050 Senior Committee: Linda J. Tacconi (chair), Christopher S. Arridge (co-chair),Alessandra Buonanno, Mike Cruise, Olivier Grasset, Amina Helmi, Luciano Iess, Eiichiro Komatsu,Jérémy Leconte, Jorrit Leenaarts, Jesús Martín-Pintado, Rumi Nakamura, Darach Watson.May 2021

- > 100 WP evaluated
- Identified three L-Class themes
 - Moons of the giant planets
 - From temperate Exoplanets to the Milky Way
 - New physical probes of the early Universe
- CMB Spectral distortions recognized as a possible 'New physical probe of the early Universe'

Voyage 2050 Senior Committee: Linda J. Tacconi (chair), Christopher S. Arridge (co-chair),Alessandra Buonanno, Mike Cruise, Olivier Grasset, Amina Helmi, Luciano Iess, Eiichiro Komatsu,Jérémy Leconte, Jorrit Leenaarts, Jesús Martín-Pintado, Rumi Nakamura, Darach Watson.May 2021

- > 100 WP evaluated
- Identified three L-Class themes
 - Moons of the giant planets
 - From temperate Exoplanets to the Milky Way
 - New physical probes of the early Universe
- CMB Spectral distortions recognized as a possible 'New physical probe of the early Universe'

New Probe of the Early Universe

Small-scale power constraints and PBH formation

JC, Khatri & Sunyaev, 2012 JC, Erickcek & Ben-Dayan, 2012 Cyr et al., 2023, ArXiv:2309.02366

Small-scale power constraints and PBH formation

JC, Khatri & Sunyaev, 2012 JC, Erickcek & Ben-Dayan, 2012 Cyr et al., 2023, ArXiv:2309.02366

A CMB spectrometer could shed light on primordial black hole formation

Small-scale power and gravitational wave link

- Lots of excitement by recent NANOGrav detection of stochastic GW background
- GW sourced by primordial scalar perturbations also cause CMB distortions

Figure from EPTA paper https://arxiv.org/abs/2306.16227 Figure from NANOGrav paper https://arxiv.org/abs/2306.16213

'Vanilla' explanation: SMBH mergers

- Early SMBH population may be required
- Yet origin of these SMBH binaries unclear
- Could necessitate IMBH as seeds, maybe of *primordial* origin?
- Possible link to primordial small-scale scalar perturbations

'Vanilla' explanation: SMBH mergers

- Early SMBH population may be required
- Yet origin of these SMBH binaries unclear
- Could necessitate IMBH as seeds, maybe of *primordial* origin?
- Possible link to primordial small-scale scalar perturbations

SIGWs, cosmic strings, phase transitions etc

- Modeling details still being debated
- These can leave imprints to the CMB spectrum!

'Vanilla' explanation: SMBH mergers

- Early SMBH population may be required
- Yet origin of these SMBH binaries unclear
- Could necessitate IMBH as seeds, maybe of *primordial* origin?
- Possible link to primordial small-scale scalar perturbations

SIGWs, cosmic strings, phase transitions etc

- Modeling details still being debated
- These can leave imprints to the CMB spectrum!

To understand the origin of the GW signal a combination of various probes is required!

'Vanilla' explanation: SMBH mergers

- Early SMBH population may be required
- Yet origin of these SMBH binaries unclear
- Could necessitate IMBH as seeds, maybe of *primordial* origin?
- Possible link to primordial small-scale scalar perturbations

SIGWs, cosmic strings, phase transitions etc

- Modeling details still being debated
- These can leave imprints to the CMB spectrum!

To understand the origin of the GW signal a combination of various probes is required!

CMB spectral distortions provide one of the most primordial tracers one could hope for!

Scalar Induced Gravitational Waves

Ananda et al. 2007; Baumann et al. 2007

Scalar Induced Gravitational Waves

Ananda et al. 2007; Baumann et al. 2007

A CMB spectrometer could rule out SIGWs as cause for large-scale *B*-modes

Is the ARCADE excess related to the GW signals?

The ARCADE radio excess

- Synchrotron-like signal first seen by ARCADE-2 (Fixsen et al. 2011)
- Confirmed by LWA (Dowel & Taylor, 2018)
- Isotropic on the sky
- Still unexplained (discussions in Singal et al. 2018 & Singal et al. 2023)

The ARCADE radio excess

- Synchrotron-like signal first seen by ARCADE-2 (Fixsen et al. 2011)
- Confirmed by LWA (Dowel & Taylor, 2018)
- Isotropic on the sky
- Still unexplained (discussions in Singal et al. 2018 & Singal et al. 2023)

Is this an early (*z*>10?) radio background possibly from accreting black holes or new physics?

Little red dots linked to ARCADE excess?

Recent JWST observations

Cosmic String solution to ARCADE excess?

- Performed detailed modeling of distortions from Cosmic String network
- Tightly constrained by CMB anisotropies and low frequency radio data

- Soft photon heating highly relevant to 21 cm prediction (Acharya, Cyr & JC, 2022; Cyr, Acharya & JC, 2024)
- Intriguing solution to the RSB

Cosmic String solution to ARCADE excess?

- Performed detailed modeling of distortions from Cosmic String network
- Tightly constrained by CMB anisotropies and low frequency radio data

- Soft photon heating highly relevant to 21 cm prediction (Acharya, Cyr & JC, 2022; Cyr, Acharya & JC, 2024)
- Intriguing solution to the RSB

CMB spectrometers could test the origin of the RSB!

Cyr, Acharya & JC, 2023, ArXiv:2305.09816 Cyr, JC & Acharya, 2023, ArXiv:2308.03512 Link to the Hubble tension?

Cosmological Recombination Radiation

Rubino-Martin et al. 2006, 2008; Sunyaev & JC, 2009, JC & Ali-Haimoud, arXiv:1510.03877

http://arxiv.org/abs/1909.01593

Testing the origin of the Hubble tension with the CRR

- Hubble tension persists... New Physics??
- H₀ Olympics identified EDE, Primordial Magnetic fields and varying m_e models as best solutions!
- n = 500n = 310⁰ 10^{-1} He- 10^{-1} 10^{-3} He-II 10^{-1} 10^{-2} $z_c = 5000$ 1000 100
- $\alpha_{\rm EM} / \alpha_{\rm EM, 0} = 0.9$ Total $\alpha_{\rm EM} / \alpha_{\rm EM, 0} = 1.0$ $\alpha_{\rm EM} / \alpha_{\rm EM, 0} = 1.1$ 10⁰ [Jy/sr] المالي 10- 10^{2} 10³ v [GHz] $m_{\rm e}/m_{\rm e,\,0} = 0.8$ Total $m_{\rm e}/m_{\rm e,\,0} = 1.0$ $m_{\rm e}/m_{\rm e,\,0} = 1.2$ 10⁰ [Jy/sr] الم 10^{-1} 10² 10³

v [GHz]

Frequency [GHz]

Hart & JC, 2022, ArXiv:2209.12290

Cosmological data seems to be preferring early recombination scenarios!

60

55

70

 H_0

65

80

75

Model-independent reconstruction of free electron fraction using Emulators

Lynch, Knox & JC, ArXiv:2406.10202 Lynch, Knox & JC, ArXiv:2404.05715 **Revised constraints on Axions and Dark Photons**

Revised Constraints on Dark Photons - I

Dark photons can convert into normal photons when $m_{\rm d} \simeq m_{\gamma}(z)$

This leads to removal of CMB photons which causes a distortion

JC, Cyr & Johnson ArXiv:2409.12115

Revised Constraints on Dark Photons - IV

JC, Cyr & Johnson ArXiv:2409.12115

COBE/FIRAS constraints still competitive

Revised Constraints on Axions - III

Cyr, JC & Manoj ArXiv:2411.13701

Significant uncertainties from B field modelling

Spectral distortion anisotropies

Main thermalization stages

JC, ArXiv:1304.6120 JC, Kite & Ravenni, 2022, papers I JC, Ravenni & Kite, 2022, papers II Kite, Ravenni & JC, 2022, papers III

New discretization of the Greens function

Main thermalization stages

JC, ArXiv:1304.6120 JC, Kite & Ravenni, 2022, papers I JC, Ravenni & Kite, 2022, papers II Kite, Ravenni & JC, 2022, papers III

New discretization of the Greens function

New photon Boltzmann hierarchy with thermalization effects

$$\begin{split} \frac{\partial y_{0}^{(0)}}{\partial \eta} &= \tau' \theta_{z} \left[M_{\mathrm{K}} \, y_{0}^{(0)} + D_{0}^{(0)} \right] + \frac{\mathcal{Q}'^{(0)}}{4}, \\ \frac{\partial \tilde{y}_{0}^{(1)}}{\partial \eta} &= -k \, \tilde{y}_{1}^{(1)} - \frac{\partial \tilde{\Phi}^{(1)}}{\partial \eta} \, \boldsymbol{b}_{0}^{(0)} + \frac{\mathcal{Q}'^{(1)}}{4}, \\ &+ \tau' \theta_{z} \left\{ M_{\mathrm{K}} \, \tilde{y}_{0}^{(1)} + D_{0}^{(1)} + \left[\tilde{\delta}_{\mathrm{b}}^{(1)} + \tilde{\Psi}^{(1)} \right] \left(M_{\mathrm{K}} \, y_{0}^{(0)} + D_{0}^{(0)} \right) + \tilde{\Theta}_{0}^{(1)} \left(D_{0}^{(0)} + M_{\mathrm{D}} \, y^{(0)} - S^{(0)} \right) \right], \\ \frac{\partial \tilde{y}_{1}^{(1)}}{\partial \eta} &= k \left(\frac{1}{3} \tilde{y}_{0} - \frac{2}{3} \tilde{y}_{2} \right) + \frac{k}{3} \tilde{\Psi}^{(1)} \, \boldsymbol{b}_{0}^{(0)} - \tau' \left[\tilde{y}_{1}^{(1)} - \frac{\tilde{\beta}^{(1)}}{3} \, \boldsymbol{b}_{0}^{(0)} \right], \\ \frac{\partial \tilde{y}_{2}^{(1)}}{\partial \eta} &= k \left(\frac{2}{5} \tilde{y}_{1}^{(1)} - \frac{3}{5} \tilde{y}_{3}^{(1)} \right) - \frac{9}{10} \, \tau' \, \tilde{y}_{2}^{(1)}, \\ \frac{\partial \tilde{y}_{\ell \geq 3}^{(1)}}{\partial \eta} &= k \left(\frac{\ell}{2\ell + 1} \tilde{y}_{\ell - 1} - \frac{\ell + 1}{2\ell + 1} \tilde{y}_{\ell + 1} \right) - \tau' \tilde{y}_{\ell}^{(1)}. \end{split}$$

Now implemented in CosmoTherm but can be done with any Boltzmann code (e.g., CAMB or CLASS)

CMB power spectra for decaying particles

- New way to constrain these scenarios
- Anisotropic heating is important!
- Degeneracy between lifetime and abundance can in principle be broken by ℓ -dependence

Kite, Ravenni & JC, 2022, papers III, ArXiv:2212.02817

CMB power spectra for decaying particles

- Γ_x = 10⁻⁸ s⁻¹ - Γ_x = 10⁻¹² s⁻¹ $--- \propto \mathcal{D}_{\ell}^{\Theta\Theta}$

- New way to constrain these scenarios
- Anisotropic heating is important!
- Degeneracy between lifetime and abundance can in principle be broken by ℓ-dependence

Can be constrainted with CMB imagers like Planck, Litebird, SO, CMB-S4 & PICO!

Kite, Ravenni & JC, 2022, papers III, ArXiv:2212.02817

SKA as a CMB experiment

- Single dish mode is enough for µ-T constraints
- Low frequency foreground monitor

- Constraints on small scales
- SKA+Litebird equivalent to PICO in terms of μ -T
- SKA could even do Bmodes...

Zegeye et al., ArXiv:2406.04326

SKA as a CMB experiment

- Single dish mode is enough for µ-T constraints
- Low frequency foreground monitor

- Constraints on small scales
- SKA+Litebird equivalent to PICO in terms of μ-T
- SKA could even do Bmodes...

Detailed study with realistic foregrounds and systematics is required!

Zegeye et al., ArXiv:2406.04326

Guaranteed distortion signals in ΛCDM

New tests of inflation and particle/dark matter physics

Signals from the reionization and recombination eras

Huge discovery potential

Complementarity and synergy with CMB anisotropy studies

JC & Sunyaev, MNRAS, 419, 2012 JC et al., MNRAS, 425, 2012 Silk & JC, Science, 2014 JC, MNRAS, 2016 JC et al., 2019, arXiv:1909.01593

COSMO TMS BISOU Voyage 2050

JC & Sunyaev, MNRAS, 419, 2012 JC et al., MNRAS, 425, 2012 Silk & JC, Science, 2014 JC, MNRAS, 2016 JC et al., 2019, arXiv:1909.01593

TMS

BISOU

Voyage 2050

JC & Sunyaev, MNRAS, 419, 2012 JC et al., MNRAS, 425, 2012 Silk & JC, Science, 2014 JC, MNRAS, 2016 JC et al., 2019, arXiv:1909.01593

TMS

BISOU

Voyage 2050

History of distortion experiments and proposals

COBE/FIRAS Mather & Fixsen

1989

 $\langle | \rangle$

Nevertheless, the cross-polarization introduced by the optical system remains very low degraded with respect to the optimal configuration, according to GRASP results. In the sa