

Mapmaking pipelines comparison from Chile for CMB-S4

Advisor: Jacques Delabrouille

¹CPB, CNRS/IN2P3 and LBNL, Berkeley ²APC

Office of Science

CMB-S4 overview

Twisted fingerprint

If the theory of inflation is true and the universe did balloon rapidly in its early moments, there should be telltale patterns visible in its first light, the cosmic microwave background

Inflation, Gravitational Waves & CMB. Credit: New Scientist

More than 500K detectors!!!

S4 will observe with SATs and LATs. (Credit: LBNL/SeeQC Inc.)

CMB-S4 : Scanning strategy

Typical scanning strategy : sets of hour-long observations at constant elevation. Circles correspond to constant elevation lines from Atacama.

Office of

Science

Data reduction pipeline

Data reduction pipeline

The mapmaking problem

Time (in seconds)

pipeline which mitigates contamination while minimizing loss of cosmological information!

Office of

Science

Striping effect

Low-frequency drift

 $\frac{\sum_t y_t}{\#\text{hits}}$ Binning

"Stripes" along the scans

FilterBin (baseline for S4, inherited from BK)

Office of

Science

Destriping ("déstriage")

 $\overline{p_{t_1}} = \overline{p_{t_2}} = \overline{p}$ $\begin{cases} s(t_1) = m(p) + n_{t_1} \\ s(t_2) = m(p) + n_{t_2} \end{cases}$

Sky-synchronous

Focus of the study

MapMaker	Pros	Cons
FilterBin	Efficient removal of low-frequency drift.	Biased : large scale modes are also removed
Destriping	Unbiased and accurateness improves with good cross-linking : interesting from Chile!	Need fine tuning to efficiently remove contamination; also expensive computationally.

Both methods are linear \rightarrow we can study them on simulations of :

- Astrophysical signal only
- Detector noise only

<u>Trade-off between mitigating</u> <u>contamination and preserving</u> <u>information</u>

Simulation Framework : TOAST

TOAST

Time-ordered Astrophysics Scalable Tools (TOAST)

Experiment simulation

"Flavor" of the timestreams

MapMaker

- Instrument :
 - Focalplane
 - Modulation with HWP
- Site : Atacama, South Pole,...
- Schedule→Observed Patch
- Weather conditions

- Sky-synchronous signal : astrophysical signal
- Detector noise
- Atmosphere

. . .

- FilterBin
- Destriper
- ...

Effect of pipeline on pure signal simulation \rightarrow mode loss

Power spectrum of recovered maps

Transfer Function

Noise simulation : properties

NERG

Science

FFFF

BERKELEY LAB

Transfer function corrected noise spectra

Conclusion

- CMB science is exciting, and so is CMB-S4!
- Comparison of two mapmaking methods on simulations from Chile for CMB-S4:
 - On pure sky-synchronous signal:
 - Transfer functions:
 - 50% mode loss for FilterBin at degree-angular scales
 - Better mode preservation by Destriping
 - On noise:
 - Destriping performance similar to FilterBin in signal-to-noise ratio

Bottom Line : destriping is an interesting alternative pipeline to FilterBin for a Chile configuration!

Office of

Science

Thank you!

NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

<u>CMB-S4 2024 Summer</u> <u>Meeting. University of</u> <u>Illinois at</u> <u>Urbana-Champaign</u>

Office of

Science

References

- 1. <u>CMB-S4 Science Case. Reference Design. and Project Plan</u>, CMB-S4 Collaboration. https://doi.org/10.48550/arXiv.1907.04473
- <u>Making cosmic microwave background temperature and polarization maps</u> <u>with MADAM</u>,E. Keihänen, R. Keskitalo, H. Kurki-Suonio, T. Poutanen, A.-S. Sirviö, A&A 510 A57 (2010) –DOI: 10.1051/0004-6361/200912813
- <u>Determination of inflationary observables by cosmic microwave background</u> <u>anisotropy experiments</u>, Lloyd Knox. https://doi.org/10.1103/PhysRevD.52.4307
- MASTER of the CMB Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex CMB Data Sets. E. Hivon,K.M. Gorski et al.https://doi.org/10.48550/arXiv.astro-ph/0105302

Backup slides

Office of

Science

In progress

- Same study with rotating HWP.
- Explore including atmospheric emission
 - Increases thermal load and white noise level + knee frequency

Atmosphere (purple) and noise (red) Power Spectral Density

Noise mitigation

VS

FilterBin

Destriping

Polynomial filtering of TOD

Estimation and subtraction of noise

