Cosmology from SPT-3G Fei Ge, Marius Millea, Etienne Camphuis, Cail Dailey, Wei Quan with the SPT-3G collaboration

CMB France - Dec 19th, 2024 - Introduction

Established by the European Com

South Pole Telescope

10-meter diameter telescope located at the South Pole in optimal conditions for **CMB** observations

Science goals

- Delensing in the BICEP/Keck field
- CMB Lensing
- Cosmological constraints from primary anisotropies
- High-ell TT, tSZ kSZ, Low-ell BB, DES x SPT, axions, galaxy clusters, point sources, transients, asteroids, planet 9

High resolution: 1.6'/1.2'/1.0' at 95/150/220 GHz

Frequency	SPT-3G 19/20	
	TT	EE
$95 \mathrm{GHz}$	5.4	8.1
$150 \mathrm{GHz}$	4.6	6.6
$220 \mathrm{GHz}$	16	23

Noise levels in μ K-arcmin for 2 years of data

CMB France - Dec 19th, 2024 - Introduction

CMB France - Dec 19th, 2024 - Introduction

CMB France - Dec 19th, 2024 - Introduction

3

Outline - CMB analyses

• Preprint is out!

• Cosmology from CMB lensing and delensed EE power spectra using 2019-2020 SPT-3G polarization data arXiv:2411.06000 [Fei Ge, Marius Millea, EC et al.]

• Ongoing:

- QE lensing (Y. Omori)
- **Summer** field analysis (F. Guidi)
- Wide field analysis (A. Vitrier, K. Dibert)

• Cosmology from TT/TE/EE power spectra using the main field (EC, W. Quan)

CMB France - Dec 19th, 2024 - Introduction

• Preprint is out!

- Cosmology from CMB lensing and delensed EE power spectra using 2019-2020 SPT-3G polarization data arXiv:2411.06000 [Fei Ge, Marius Millea, EC et al.]
- **Ongoing**:

 - QE lensing (Y. Omori)
 - **Summer** field analysis (F. Guidi)
 - Wide field analysis (A. Vitrier, K. Dibert)

• Cosmology from TT/TE/EE power spectra using the main field (EC, W. Quan)

CMB France - Dec 19th, 2024 - Introduction

Highlights

- The $\phi\phi$ bandpowers at L>350 and EE bandpowers at *l*>2000 are the most precisely measured to date.
- With signals only from CMB polarization, we are able to achieve constraints on H_0 and S_8 comparable to Planck results, and are the tightest constraints from CMB polarization-only inference.
- Assuming LCDM, SPT results are consistent with Planck and ACT.
- Blind analysis, with a post-unblinding change
- We also detects $>3\sigma$ effects from non-linear evolution in CMB lensing.

CMB France - Dec 19th, 2024 - MUSE

Marginal Unbiased Score Expansion (MUSE)

- (Millea & Seljak 2022) \bullet
- Goal: jointly reconstruct unlensed EE and $\phi\phi$ band powers, and systematics parameters
- A bayesian map-level inference effectively uses all N-point statistics

 $\mathcal{P}(f, \phi, \theta \mid d)$

CMB France - Dec 19th, 2024 - MUSE - (1) Method

0

Marginal Unbiased Score Expansion (MUSE)

- (Millea & Seljak 2022)
- Goal: jointly reconstruct unlensed
 EE and φφ band powers, and
 systematics parameters
- A **bayesian map-level inference** effectively uses all N-point statistics

Marginal Unbiased Score Expansion (MUSE)

- (Millea & Seljak 2022)
- Goal: jointly reconstruct unlensed EE and $\phi\phi$ band powers, and systematics parameters
- A bayesian map-level inference effectively uses all N-point statistics

$$\mathscr{P}(\theta | d) = \int df d\phi \mathscr{P}(f, \phi, \theta | d)$$

Marginalizing over the latent variables can be done using a large number of simulations of the data = <u>MUSE approach</u> (fully differentiable)

CMB France - Dec 19th, 2024 - MUSE - (1) Method

Marginal Unbiased Score Expansion (MUSE)

- MUSE yields a multi-variate Gaussian approximation to the marginal posterior
- Covariance is obtained with differentiation and simulations
- Naturally includes systematic parameters
- Cosmological parameters (γ) likelihood:

$$-2\log \mathcal{P}(\hat{\theta} \mid \gamma) = \left[\theta(\gamma) - \hat{\theta}\right]^{\dagger} \Sigma_{\text{MUSE}}^{-1} \left[\theta(\gamma) - \hat{\theta}\right]^{\dagger}$$

Correlation matrix of reconstructed bandpowers and systematic parameters

CMB France - Dec 19th, 2024 - MUSE - (1) Method

(2) Validation

(a) on mock observations

- No bias on the mean bandpowers estimated on a set of 100 mocks larger than 3σ .
- The scatter of mean bandpowers are within 10% of the statistical uncertainty.

- All means joint analysis of 95+150+220 GHz.
- Colored lines show mean bandpowers over 100 mock sims.
- Gray bands show 1 σ and 2 σ error of 95+150+220 results.

CMB France - Dec 19th, 2024 - MUSE - (2) Validation

8

(2) Validation

(a) on mock observations

- The product of individual posteriors recover the input truth of the mocks using a set of 100 mocks.
- Pipeline bias to individual cosmological parameters has been bounded to $< 0.1\sigma$

CMB France - Dec 19th, 2024 - MUSE - (2) Validation

9

(2) Validation

(b) on data

- We test data consistency by comparing band powers from single-frequency runs
- We find good agreement between frequency, before and after postunblinding change
- Validation steps allow us to unblind cosmological parameters

CMB France - Dec 19th, 2024 - MUSE - (2) Validation

(3) Post-unblinding

- After unblinding, we discovered an additional source of uncertainty coming from polarized beams
- **Before:** •
 - $\mathbb{B}_P^{\nu} = \mathbb{B}_T^{\nu}$
- <u>After:</u>
 - $\mathbb{B}_P^{\nu}(\beta_{\text{pol}}^{\nu}) = \mathbb{B}_{\text{main}}^{\nu} + \beta_{\text{pol}}^{\nu} \left(\mathbb{B}_T^{\nu} \mathbb{B}_{\text{main}}^{\nu}\right)$
- Affects:
 - Slope of unlensed EE band powers
 - $\{n_{\rm s}, \omega_{\rm b}\}$ plane

CMB France - Dec 19th, 2024 - MUSE - (3) Post-unblinding

(3) Post-unblinding

- After unblinding, we discovered an additional source of uncertainty coming from polarized beams
- •

- Affects:

 - $\{n_{\rm s}, \omega_{\rm b}\}$ plane

CMB France - Dec 19th, 2024 - MUSE - (3) Post-unblinding

(4) Results: bandpowers

LCDM model fits SPT data well and in agreement with Planck. This work has the tightest bandpower measurement of $\phi\phi$ at L>350 and EE at ℓ>2000 to date **Unlensed EE band powers**

CMB France - Dec 19th, 2024 - MUSE - (4) Results

(4) Results: bandpowers

LCDM model fits SPT data well and in agreement with Planck. This work has the tightest bandpower measurement of \$\ophi\$ at L>350 and EE at \$\ellow 2000 to date

Lensing $\phi\phi$ band powers

CMB France - Dec 19th, 2024 - MUSE - (4) Results

(4) Results: parameters **Pol-only**

- The SPT polarization-only constraints are better than polarization data from other observations.
- From polarization only signal, SPT data also yields a low $H_0 = 66.81 \pm 0.81$

at 5.4 σ tension with SHoES result.

Experiments comparison from pol-only data*

CMB France - Dec 19th, 2024 - MUSE - (4) Results

(4) Results: parameters

Combined with WMAP

• We see that either ACT or SPT, when combined with WMAP for constraints on larger angular scales, achieve constraints on cosmological parameters with similar constraining power as the constraints from Planck.

CMB France - Dec 19th, 2024 - MUSE - (4) Results

(4) Results: Extensions

 SPT results also shows the mild excess lensing power with respect to *Planck* prediction See [Craig et al. 2024, Green&Meyers 2024]

(4) **Results: Extensions**

- SPT results also shows the mild excess lensing power with respect to Planck prediction
- We first see $> 3\sigma$ detection of nonlinear structure growth in CMB lensing, and consistent with $A_{\rm mod} = 1$

CMB France - Dec 19th, 2024 - MUSE - (4) Results

17

(4) **Results: Extensions**

- SPT results also shows the mild excess lensing power with respect to Planck prediction
- We first see $> 3\sigma$ detection of nonlinear structure growth in CMB lensing, and consistent with $A_{mod} =$
- For the Λ CDM extension models, we find no preference for significant deviations of the standard cosmology values using Planck, ACT and SPT data.

CMB France - Dec 19th, 2024 - MUSE - (4) Results

18

Cosmology from CMB TT/TE/EE using 2019-2020 SPT-3G data

CMB France - Dec 19th, 2024 - TT/TE/EE

Ongoing analysis

TT/TE/EE **SPT-3G/19/20**

- TT/TE/EE power spectra SNR compared to *Planck* and SPT-3G
- SPT-3G 2018 results: [Balkenhol and SPT-3G collaboration, 2023]

CMB France - Dec 19th, 2024 - TT/TE/EE

TT/TE/EE **SPT-3G/19/20**

- TT/TE/EE power spectra SNR compared to *Planck* and SPT-3G
- Wide field will bring a lot more information

CMB France - Dec 19th, 2024 - TT/TE/EE

21

Summary of results

- Using MUSE method for optimal inference, we obtained the most precise measurement of $\phi\phi$ at L > 350 and EE at $\ell > 2000$ from SPT-3G polarization maps
- The SPT constraints using polarization signal are comparable to Planck at H_0 and S_8 , confirming the existing tensions
- Assuming Λ CDM, SPT results are consistent with Planck and ACT, passing a powerful test of the standard cosmological model

SPT T&E+pp centered on MUSE EE+pp

CMB France - Dec 19th, 2024 - Conclusion

Additional slides

23

Marginal Unbiased Score Expansion (MUSE)

Simulation model:

 $f \sim \mathcal{N}(0, \mathbb{C}_{f}^{\operatorname{curv}\operatorname{sky}}(A_{b}^{\operatorname{EE}}))$ $\phi \sim \mathcal{N}(0, \mathbb{C}_{\phi}^{\operatorname{curv}\operatorname{sky}}(A_{b}^{\phi\phi}))$ $n^{\nu} \sim \{n^{\nu}_{\text{signflips}}\}$ $+\epsilon_{\rm O}^{\nu,i}\cdot t_{\rm O}^{\nu}+\epsilon_{\rm U}^{\nu,i}\cdot t_{\rm U}^{\nu}+n^{\nu})$

$d^{\nu,i} = \mathbb{M}_{\text{fourier}} \cdot \mathbb{M}_{\text{trough}} \cdot \mathbb{M}_{\text{pix}} \cdot \left(\mathbb{PWF} \cdot \mathbb{TF}^{\nu} \cdot \mathbb{R}(\psi_{\text{pol}}^{\nu}) \cdot A_{\text{cal}}^{\nu,i} \cdot \mathbb{B}(\beta_n, \beta_{\text{pol}}^{\nu}) \cdot \mathbb{G} \cdot \mathbb{P} \cdot \mathbb{L}(\phi) \cdot f\right)$

Marginal Unbiased Score Expansion (MUSE) Posterior model:

 $f \sim \mathcal{N}(0, \mathbb{C}_{f}^{\text{flat sky}}(A_{b}^{\text{EE}}))$ $\phi \sim \mathcal{N}(0, \mathbb{C}_{\phi}^{\text{flat sky}}(A_{b}^{\phi\phi}))$ $\mu^{\nu,i} = \mathbb{M}_{\text{fourier}} \cdot \mathbb{M}_{\text{trough}} \cdot \mathbb{M}_{\text{pix}} \cdot \left(\mathbb{PWF} \cdot \mathbb{TF}^{\nu} \cdot \mathbb{R}\right)$ $d^{\nu} \sim \mathcal{N}(\mu^{\nu}, \mathbb{C}_{n}^{\nu})$ $\Rightarrow -2\log \mathscr{P}(f,\phi,\theta \mid d) = f^{\dagger}\mathbb{C}_{f}^{-1}f + \phi^{\dagger}\mathbb{C}_{\phi}^{-1}$ where $-2\log \mathcal{P}(\phi) = \left\| \mathbb{M}_{\text{pix}} \nabla^2 \phi \right\|^2 / 10^{-8}$

$$(\psi_{\text{pol}}^{\nu}) \cdot A_{\text{cal}}^{\nu,i} \cdot \mathbb{B}(\beta_n, \beta_{\text{pol}}^{\nu}) \cdot \mathbb{L}(\phi) \cdot f + \epsilon_Q^{\nu,i} \cdot t_Q^{\nu} + \epsilon_U^{\nu,i} \cdot t_U^{\nu}$$

$$(d^{\nu} - \mu^{\nu})^{\dagger} (\mathbb{C}_n^{\nu})^{-1} (d^{\nu} - \mu^{\nu}) - 2 \log \mathscr{P}(\phi)$$

Marginal Unbiased Score Expansion (MUSE)

- (Millea & Seljak 2022) lacksquare
- Marginal score evaluated at the maximum a posteriori (MAP)

$$s_i^{\text{MAP}}(\theta, d) = \frac{d}{d\theta_i} \log \mathcal{P}(\hat{z}(d, \theta), \theta \mid d) \Big|_{\theta}$$
$$\hat{z}(d, \theta) = \arg \max \mathcal{P}(z, \theta \mid d)$$

$$\mathscr{P}(\theta | d) = \int df d\phi \mathscr{P}(f, \phi, \theta | d)$$

Solving this equation gives the marginal posterior mean

 $s_i^{\text{MAP}}(\theta, d')$ $s_i^{\text{MAP}}(\theta, d)$ $d' \sim \mathcal{P}(d' \mid \theta)$ Accurate simulation model is the key to get

unbiased bandpower estimates from MUSE.

CMB France - Dec 19th, 2024 - Additional slides

Marginal Unbiased Score Expansion (MUSE)

- (Millea & Seljak 2022)
- Marginal score evaluated at the maximum a posteriori (MAP)

$$s_i^{\text{MAP}}(\theta, d) = \frac{d}{d\theta_i} \log \mathcal{P}(\hat{z}(d, \theta), \theta \mid d)$$
$$\hat{z}(d, \theta) = \arg \max \mathcal{P}(z, \theta \mid d)$$

Credit: Fei Ge & Marius Millea

Accurate simulation model is the key to get unbiased bandpower estimates from MUSE.

Marginal Unbiased Score Expansion (MUSE)

- (Millea & Seljak 2022)
- Marginal score evaluated at the maximum a posteriori (MAP)

$$s_{i}^{\text{MAP}}(\theta, d) = \frac{d}{d\theta_{i}} \log \mathcal{P}(\hat{z}(d, \theta), \theta \mid d) \Big|_{\theta}$$

$$\hat{z}(d, \theta) = \arg \max_{z} \mathcal{P}(z, \theta \mid d)$$

$$-2 \log \mathcal{P}(\theta \mid d) \approx (\theta - \hat{\theta})^{\dagger} (\Sigma_{\text{MUSE}})^{-1} (\theta - \hat{\theta}) + C$$

$$\Sigma_{\text{MUSE}}^{-1} = H^{\dagger} J^{-1} H + \Sigma_{\text{prior}}^{-1}$$
$$J_{ij} = \text{cov} \left(s_i^{\text{MAP}}(\hat{\theta}, d), s_j^{\text{MAP}}(\hat{\theta}, d) \right)_{d \sim \mathscr{P}(d)}$$
$$H_{ij} = \frac{d}{d\theta_j} \left[\left\langle s_i^{\text{MAP}}(\hat{\theta}, d) \right\rangle_{d \sim \mathscr{P}(d \mid \theta)} \right] \Big|_{\theta = \hat{\theta}}$$

Maximum a posteriori (MAP) maps from 95+150+220 GHz data at the MUSE estimate of theory and systematics parameters, $\hat{\theta}$.

MAPs correspond to a filtering of the data which maximizes signal relative to noise (akin to a linear Wiener filter, but in the case of the MAP κ , a non linear filter).

CMB France - Dec 19th, 2024 - Additional slides

28

(4) Results: bandpowers LCDM model fits SPT data well and in agreement with Planck.

Unlensed EE band powers

CMB France - Dec 19th, 2024 - MUSE - (4) Results

(4) Results: bandpowers LCDM model fits SPT data well and in agreement with Planck.

Lensing band powers

CMB France - Dec 19th, 2024 - MUSE - (4) Results

CMB France - Dec 19th, 2024 - Additional slides

Results - S_8

Assuming **ACDM**

- HSC Y3 3×2
 - KiDS-1000
- DES Y3 3×2
- WMAP+ACT+SPT
- Planck+ACT+SPT
 - Planck+ACT
 - Planck+SPT
 - Planck
 - ACT
 - SPT

CMB France - Dec 19th, 2024 - Additional slides

Results

Amplitude of nonlinear structure growth

• If the solution to S8 tension is due to unknown physics of non-linear structure growth, our result suggests it to happen at a later time or at smaller scales.

CMB France - Dec 19th, 2024 - Additional slides

Summer fields Led by F. Guidi

- Summer fields will add large scale information
- Particularly useful for ACDM extensions

CMB France - Dec 19th, 2024 - Additional slides

Summer fields Led by F. Guidi

- Summer fields will add large scale information
- Particularly useful for ACDM extensions

CMB France - Dec 19th, 2024 - Additional slides

Summer fields Led by F. Guidi

- Summer fields will add large scale information
- Particularly useful for ACDM extensions

CMB France - Dec 19th, 2024 - Additional slides

CMB France - Dec 19th, 2024 - Additional slides

Full SPT-3G forecasts

[Prabhu et al., 2024]

Main (green) + Summer (yellow) + Wide (red) → Orange line

CMB France - Dec 19th, 2024 - Additional slides

Full SPT-3G forecasts

[Prabhu et al., 2024]

Main (green) + Summer (yellow) + Wide (red) → Orange line

CMB France - Dec 19th, 2024 - Additional slides

