

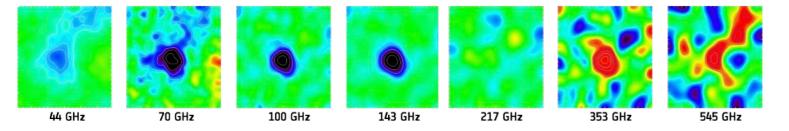
Detection of distant galaxy clusters with the NIKA2 camera via the SZ effect

CMB France #6 – December 19, 2024

Damien Cherouvrier, Juan F. Macías-Pérez, F. Xavier Désert, Mateo Fernández-Torreiro and the NIKA2 collaboration

I. Context

II. Cluster candidates detection


III. Cluster candidates properties

IV. Cluster sample characterization

Sunyaev-Zel'dovich effect

CMB spectral distortion from Inverse Compton scattering with clusters' hot electrons in the ICM

- Very distinct and characteristic spectrum
- Integrated Compton parameter is a proxy of cluster mass
- SZ effect is redshift independent (not affected by cosmological dimming)

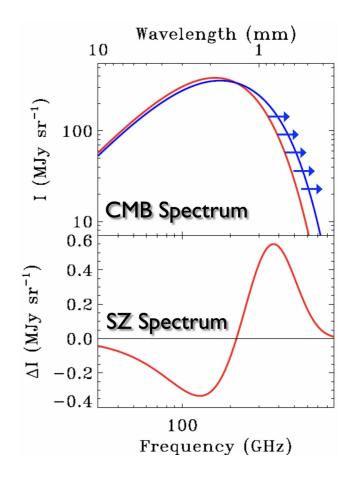
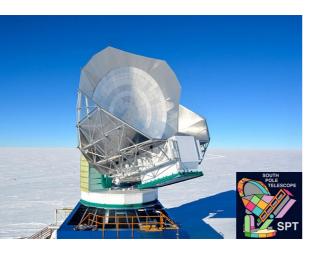
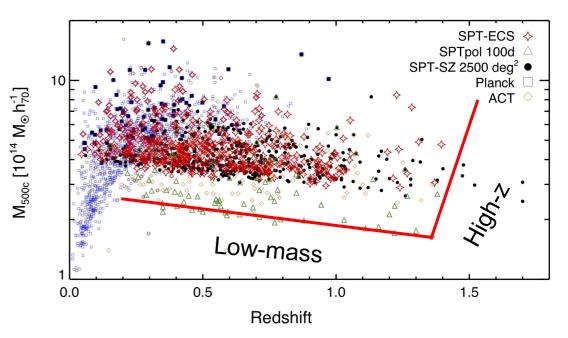



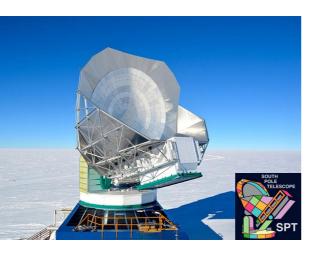
Image credit: ESA / HFI & LFI Consortia

A2319 Cluster observed by Planck

Millimeter large SZ surveys



 R_{500} : radius at which the mean cluster density is 500 times the critical density of the Universe

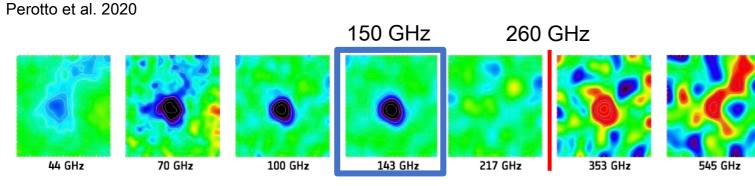

- Catalog of thousands of SZ clusters from previous millimeter large surveys (Planck, ACT, SPT)
- But they have relatively poor resolutions
 - ~5 arcmin for Planck
 - ~/<1 arcmin for ACT and SPT

Distribution in the mass-redshift plane of all the clusters published in the Planck, SPT, and ACT catalogues.

Millimeter large SZ surveys

 R_{500} : radius at which the mean cluster density is 500 times the critical density of the Universe

- Catalog of thousands of SZ clusters from previous millimeter large surveys (Planck, ACT, SPT)
- But they have relatively poor resolutions
 - ~5 arcmin for Planck
 - ~/<1 arcmin for ACT and SPT

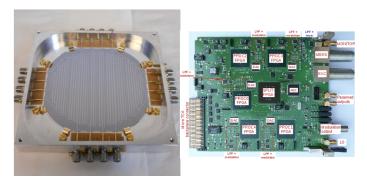

We need high angular resolution to detect low mass/high redshift clusters

NIKA2

- Dual band millimeter camera of 2 900 Kinetic Inductance Detectors (KIDs) installed at the IRAM 30m telescope
- Built in Grenoble by GIS KIDS (LPSC, Institut Néel, IPAG, IRAM)
- Operating since 2015, we dispose of 1300h of guaranteed time

Observing band	150 GHz	260 GHz		
Field of view [arcmin]	6.5	6.5		
Angular resolution [arcsec]	17.6 ''	11.1"		
Mapping speed [arcmin ² .mJy ⁻² .h ⁻¹]	1388	111		

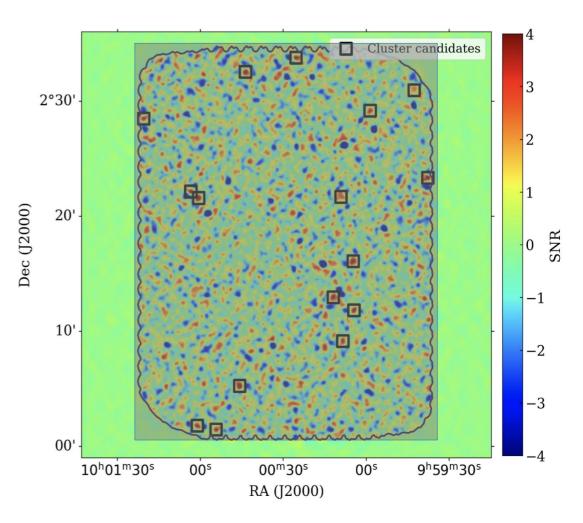
- Large field of view
- High angular resolution
- High sensitivity



A2319 Cluster observed by Planck

IRAM telescope

Monfardini+ 17, Bourrion+ 16, Adam+ 18


NIKA2 KIDs array and readout board

6

Blind cluster detection in deep NIKA2 fields

- Data acquired by the NIKA2 Legacy Survey (N2CLS) Large Program
- ~195 hours of deep field observations of the well-known COSMOS field
- ~1400 arcmin² field
- Used for the detection of high redshift galaxies (*Bing et al 2023, 2024*)

Objective : Blindly detect galaxy clusters with NIKA2

COSMOS NIKA2 150 GHz map

I. Context

II.Cluster candidates detection

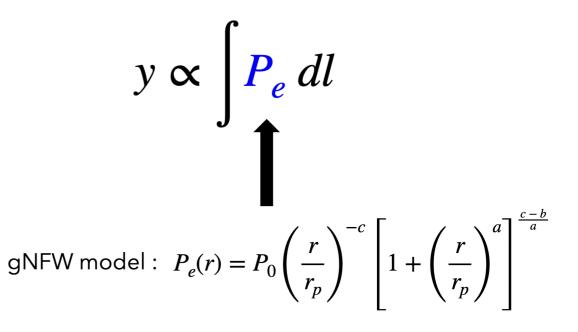
III. Cluster candidates properties

IV. Cluster sample characterization

Blind cluster detection : Matched Filter technique

- Used in the construction of previous large surveys (Planck, SPT, ACT) cluster catalogs
- Enhances the SNR of sources with a well-known spatial template (e.g galaxy clusters)
- Will be used in future experiments (Simons Observatory, etc...)

Maps


$$M(\vec{x}) = S(\vec{x}, \theta_c) + N(\vec{x})$$

Spatial template Noise

Matched Filter (Fourier space) $\boldsymbol{\Psi}(\vec{k}) = \left[\boldsymbol{S}(\vec{k})^T \boldsymbol{C}(\vec{k})^{-1} \boldsymbol{S}(\vec{k})\right]^{-1} \boldsymbol{S}(\vec{k}) \boldsymbol{C}(\vec{k})^{-1}$

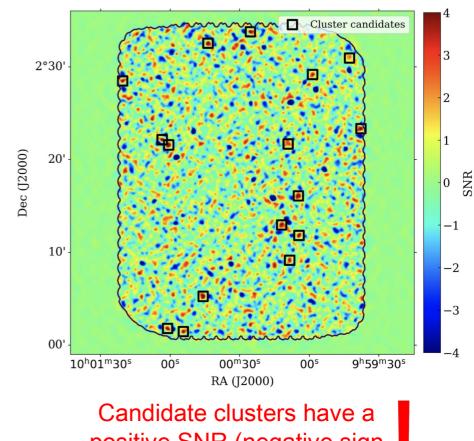
Adapted package *pymf* from Erler et al. 2019

Blind cluster detection

- **1. Use a Compton 2D profile as template**
 - **From gNFW pressure profile (***Nagai et al.* 2007)
 - With Arnaud et al. 2010 (A10) parameters
- 2. Filter the map with different template sizes as done for Planck
- 3. Find peaks in the filtered map above a Signal-to-Noise Ratio (SNR) threshold of 4

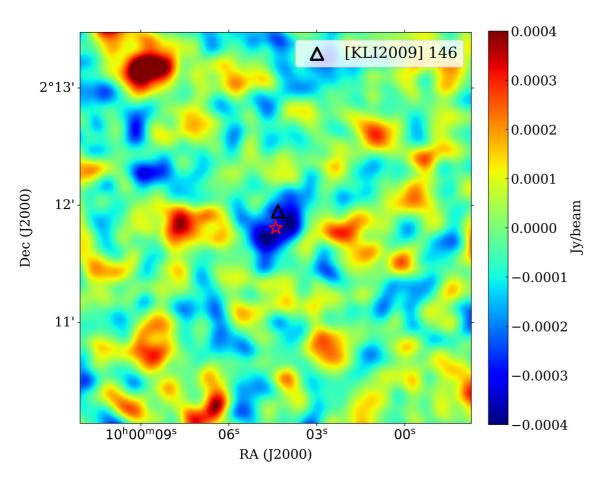
-> 5 parameters : P_0 amplitude

 r_p, a transition radius/ steepness


c, b internal/ external slopes

Blind cluster detection

- 1. Use a Compton 2D profile as template
 - From gNFW pressure profile (*Nagai et al. 2007*)
 - With Arnaud et al. 2010 (A10) parameters
- 2. Filter the map with different template sizes as done for Planck
- **3. Find peaks in the filtered map above a SNR threshold of 4**


We have 16 cluster candidates after these 3 steps

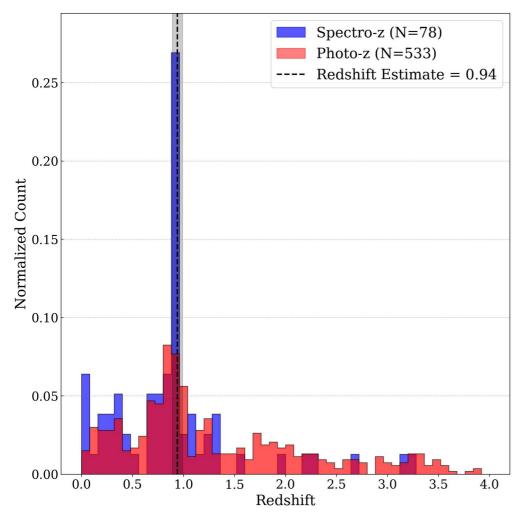
Filtered NIKA2 150GHz map with a cluster template the size of the beam

positive SNR (negative sign accounted for in the filter)

Cluster candidates matching

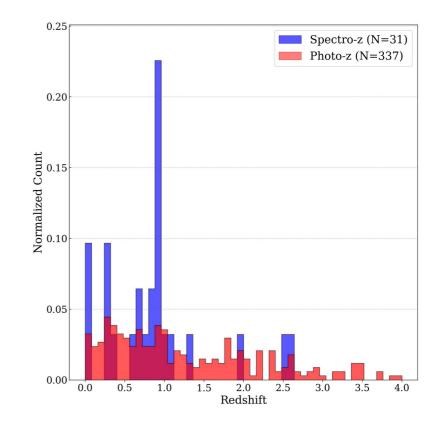
¹⁵⁰ GHz NIKA2 map

• Search cluster catalogs in the literature to find possible matches with our candidates


Red star : Cluster candidate

Black triangle : Optically (spectro redshift) detected cluster

- Clear negative signal in the map
- Match with a high redshift cluster at z ~ 0.94 :
 [KLI2009] 146


8 of our 16 detections are matched with a previously detected cluster

Spectro and photo redshift catalogs

Normalized spectroscopic (blue) and photometric (red) redshift counts within a 1 arcmin radius

- In most case, redshift estimates are found at the peak of redshift distrib
- Some unidentified candidates also have welldefined redshift peaks

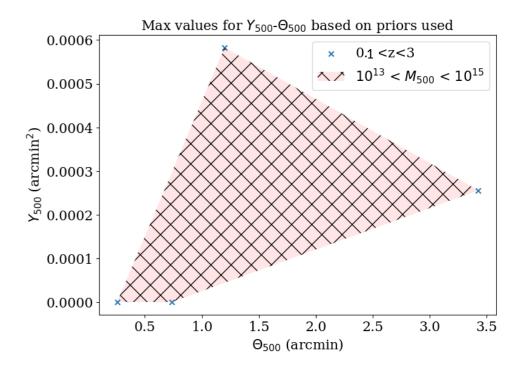
Cluster candidate sample

Candidate Name	RA	DEC	SNR	z	θ_{500}	Y ₅₀₀	M ₅₀₀	Matching cluster
	0	0			arcmin	10 ⁻⁵ arcmin ²	$10^{14}~M_{\odot}$	Name (distance ["], reference)
NIKA2-CL J100045.8+020514.3	150.1907	2.0873	5.31	-	Size	tSZ Flux	Mass	-
NIKA2-CL J095937.7+022320.4	149.9071	2.3890	5.00	0.740 ± 0.029				ALH J0959.38+0223.03 (17.8", 8)
NIKA2-CL J100004.7+021604.4	150.0194	2.2679	4.97	-				-
NIKA2-CL J100043.6+023232.4	150.1818	2.5423	4.87	-				-
NIKA2-CL J100025.3+023346.4	150.1056	2.5629	4.67	0.72 ± 0.02				[BMH2011] 124 (11.5", 10, 26)
NIKA2-CL J100100.6+022134.4	150.2524	2.3596	4.67	0.769 ± 0.01				[SCC2012] 0788 (9.1", 39)
NIKA2-CL J100004.4+021148.4	150.0183	2.1968	4.60	0.94 ± 0.05				[KLI2009] 146* (8.7", 24)
NIKA2-CL J100103.4+022208.4	150.2641	2.3690	4.54	-				-
NIKA2-CL J100011.9+021256.5	150.0494	2.2157	4.48	0.24 ± 0.08				XMMXCS J100012.3+021246.7 (11.7", 29)
NIKA2-CL J100101.1+020146.6	150.2546	2.0296	4.30	-				-
NIKA2-CL J100054.3+020126.4	150.2262	2.0240	4.28	1.423 ± 0.014				[SCC2012] 1517 (16.0", 39)
NIKA2-CL J100009.1+022140.3	150.0378	2.3612	4.27	-				-
NIKA2-CL J095942.6+023056.5	149.9277	2.5157	4.08	0.73±0.02				DESI 2353000051 (12.0") 46
NIKA2-CL J100120.5+022828.2	150.3353	2.4745	4.07	-				-
NIKA2-CL J100008.4+020908.3	150.0350	2.1523	4.04	-				-
NIKA2-CL J095958.5+022910.4	149.9938	2.4862	4.01	0.397±0.010		L		[SCC2012] 0270 (14,8", 39)

8 of our 16 detections are matched with a previously detected cluster or group of galaxies

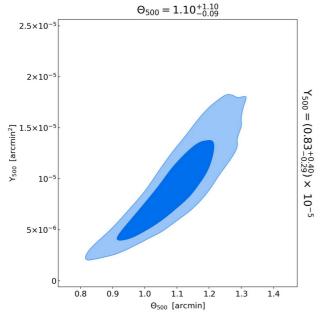
I. Context

II. Cluster candidates detection


III. Cluster candidates properties

IV. Cluster sample characterization




- Fit a cluster model using MCMC sampling, with 2 free parameters M_{500} and z to find $Y_{500-500}$
- Model : integrated gNFW pressure profile model (*Nagai et al. 2007*) with fixed parameters as in Arnaud 2010
- Account for transfer function of data reduction
- Flat priors on M_{500} and z

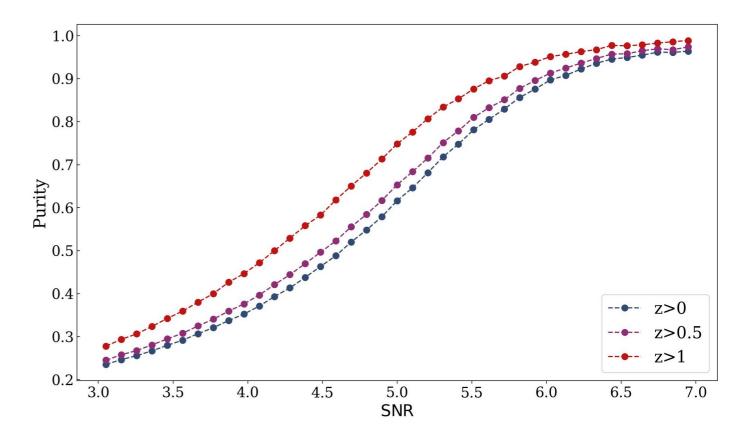
Mass Redshift tSZ Flux Size

Zoom in on NIKA2-CL J100004.4+021148.4 (z ~0.94)

- We can fix the redshift for candidates with a known counterpart
- Possible to get a mass estimation in this case

$$M\,500 = 1.16^{+0.33}_{-0.23} \times 10^{14} M_{\odot}$$

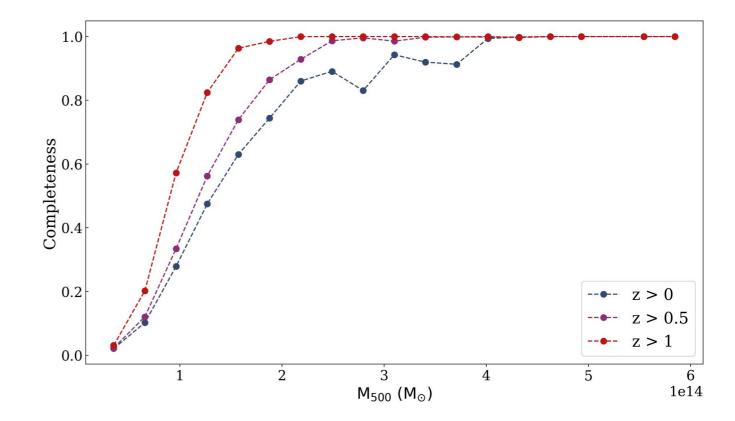
For a Planck like scaling relation (Arnaud et al. 2010)



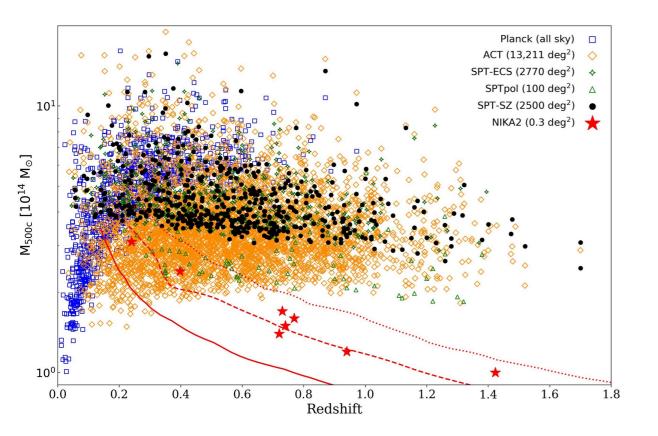
- I. Context
- II. Cluster candidates detection
- III. Cluster candidates properties
- IV. Cluster sample characterization

Cluster sample characterization

- 1000 simulations of expected number of clusters in COSMOS in a certain (M₅₀₀, z) range + noise + point sources
- Purity : Percentage of true detection in the sample
 - We reach a purity of **60% at SNR ~5.0**
- Completeness : Fraction of true cluster detected


0

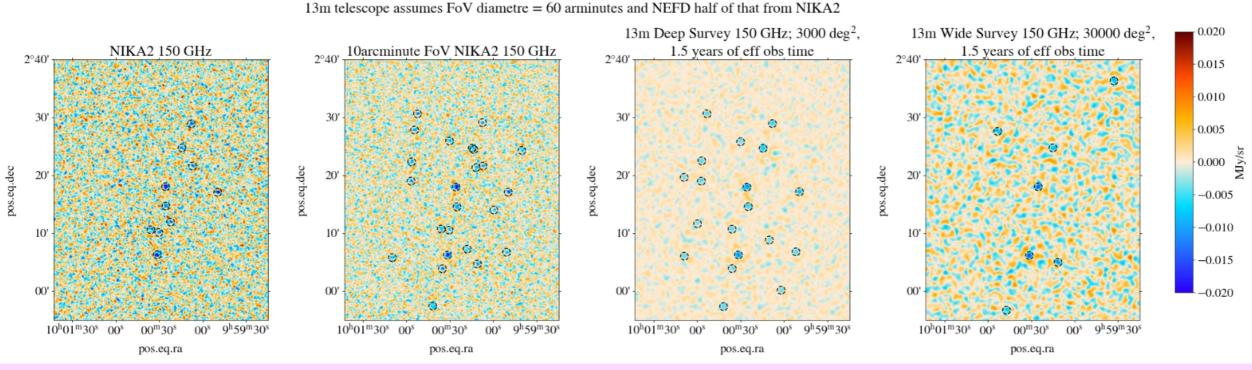
Purity as a function of SNR


Cluster sample characterization

- 1000 simulations of expected number of clusters in COSMOS in a certain (M₅₀₀, z) range + noise + point sources
- Purity : Percentage of true detection in the sample
 - \circ We reach a purity of 60% at SNR ~5.0
- Completeness : Fraction of true cluster detected
 - able to detect clusters in this mass-redshift range

Completeness as a function of mass

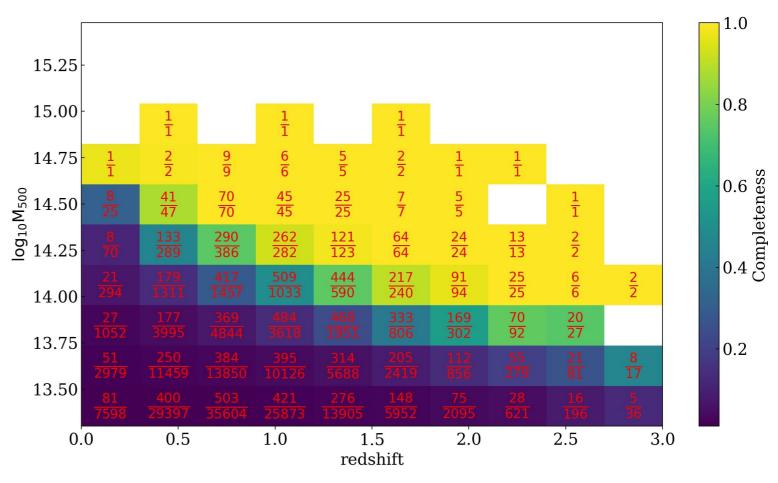
High resolution blind cluster detection


- Very promising results
- Validated NIKA2 catalog properties (purity and completeness) with simulations
- Future crosscheck on future large surveys catalog (e.g. Euclid, Vera Rubin)

We can blindly detect galaxy clusters with NIKA2

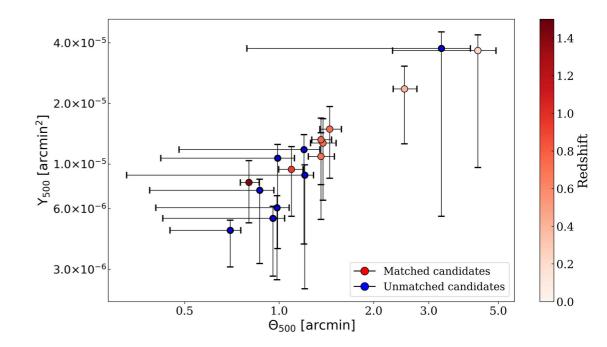
Need follow up observations to characterize cluster properties

Conclusion and perspectives


- First blind tSZ detection of galaxy clusters at very high angular resolution
 - ✓ 16 candidates, 8 with a known counterpart
 - ✓ Median redshift of the sample : $z \sim 0.74$, Median mass : $M_{500} \sim 1.2 \ 10^{14} \text{ M}$
- · Good prospects for a high-resolution survey of the North of the sky
 - ✓ Upgrades of NIKA2 (extra frequency + larger FOV) to cover a larger area (tens of deg²)
 - ✓ A new 13(15)-m telescope to cover thousands of deg² (new generation of Event Horizon telescope ?)

Backup

Cluster sample characterization


- 1000 simulations of expected number of clusters in COSMOS in a certain (M₅₀₀, z) range + noise + point sources
- Purity : Percentage of true detection in the sample
 - \circ We reach a purity of 60% at SNR ~5.0
- Completeness : Fraction of true cluster detected
 - Yellow-green region : able to detect clusters in this mass-redshift range

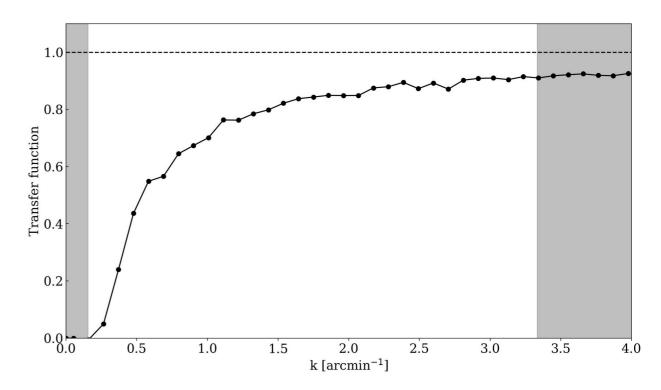
Completeness

Conclusion and perspectives

- First blind detection of galaxy clusters at high angular resolution
 - \checkmark 16 candidates, 8 with a known counterpart
 - $\checkmark\,$ Mapping the mass-redshift region of interest
 - ✓ Median redshift of the sample : $z \sim 0.74$ ✓ Median mass : $M_{500} \sim$

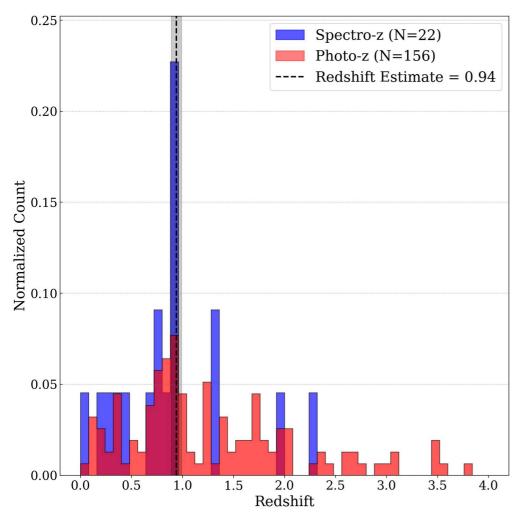
 Y_{500} - Θ_{500} estimates for each candidate

Cluster candidate sample


Candidate Name	RA	DEC	SNR	Z	θ_{500}	Y ₅₀₀	M ₅₀₀	Matching cluster
	0	0			arcmin	$10^{-5} \operatorname{arcmin}^2$	$10^{14}~M_{\odot}$	Name (distance ["], reference)
NIKA2-CL J100045.8+020514.3	150.1907	2.0873	5.31	-	$0.48^{+0.45}_{-0}$	$0.68^{+0.55}_{-0.40}$	-	-
NIKA2-CL J095937.7+022320.4	149.9071	2.3890	5.00	0.740 ± 0.029	$1.42^{+0.10}_{-0.15}$	$1.08\substack{+0.62\\-0.43}$	$1.44^{+0.47}_{-0.32}$	ALH J0959.38+0223.03 (17.8", 8)
NIKA2-CL J100004.7+021604.4	150.0194	2.2679	4.97	-	$0.74^{+0.47}_{-0.26}$	$0.73^{+0.69}_{-0.46}$	-	-
NIKA2-CL J100043.6+023232.4	150.1818	2.5423	4.87	-	$0.48\substack{+0.31 \\ -0}$	$0.51^{+0.37}_{-0.28}$	-	-
NIKA2-CL J100025.3+023346.4	150.1056	2.5629	4.67	0.72 ± 0.02	$1.39^{+0.12}_{-0.14}$	$0.95^{+0.51}_{-0.46}$	$1.35^{+0.42}_{-0.35}$	[BMH2011] 124 (11.5", 10, 26)
NIKA2-CL J100100.6+022134.4	150.2524	2.3596	4.67	0.769 ± 0.01	$1.39\substack{+0.08\\-0.12}$	$1.28^{+0.41}_{-0.51}$	$1.61^{+0.27}_{-0.42}$	[SCC2012] 0788 (9.1", 39)
NIKA2-CL J100004.4+021148.4	150.0183	2.1968	4.60	0.94 ± 0.05	$1.10\substack{+0.10 \\ -0.09}$	$0.83^{+0.40}_{-0.29}$	$1.16^{+0.33}_{-0.23}$	[KLI2009] 146* (8.7", 24)
NIKA2-CL J100103.4+022208.4	150.2641	2.3690	4.54	-	$0.46^{+0.23}_{-0}$	$0.39^{+0.14}_{-0.09}$	-	-
NIKA2-CL J100011.9+021256.5	150.0494	2.2157	4.48	0.24 ± 0.08	$3.00^{+1.83}_{-0.73}$	$2.0^{+2.3}_{-1.2}$	$2.35^{+1.42}_{-0.80}$	XMMXCS J100012.3+021246.7 (11.7", 29)
NIKA2-CL J100101.1+020146.6	150.2546	2.0296	4.30	-	$0.47^{+0.39}_{-0}$	$0.43^{+0.31}_{-0.25}$	-	-
NIKA2-CL J100054.3+020126.4	150.2262	2.0240	4.28	1.423 ± 0.014	$0.82^{+0.05}_{-0.06}$	$0.72^{+0.34}_{-0.22}$	$1.03^{+0.19}_{-0.24}$	[SCC2012] 1517 (16.0", 39)
NIKA2-CL J100009.1+022140.3	150.0378	2.3612	4.27	-	$1.7^{+2.4}_{-1.0}$	$1.6^{+3.0}_{-1.1}$	-	-
NIKA2-CL J095942.6+023056.5	149.9277	2.5157	4.08	0.73 ± 0.02	$1.48^{+0.09}_{-0.14}$	$1.46^{+0.46}_{-0.63}$	$1.76^{+0.30}_{-0.48}$	DESI 2353000051 (12.0") 46
NIKA2-CL J100120.5+022828.2	150.3353	2.4745	4.07	-	$0.56^{+0.31}_{-0.09}$	$0.39^{+0.26}_{-0.15}$	-	-
NIKA2-CL J100008.4+020908.3	150.0350	2.1523	4.04	-	$0.48^{+0.46}_{-0}$	$0.47^{+0.43}_{-0.26}$	-	-
NIKA2-CL J095958.5+022910.4	149.9938	2.4862	4.01	0.397±0.010	$2.52\substack{+0.25 \\ -0.20}$	$1.94^{+1.18}_{-0.70}$	$2.40^{+0.59}_{-0.61}$	[SCC2012] 0270 (14,8", 39)

Transfer function

Transfer function computed from simulated white noise signal


 Analysis optimised for point sources – explains why clusters seem to be so compact

• Future work needed for better cluster detection and characterization

Transfer function of the 2mm NIKA2 data

Spectro and photo redshift catalogs

- In most case, redshift estimates are found at the peak of redshift distrib
- Some unidentified candidates also have welldefined redshift peaks

Normalized spectroscopic (blue) and photometric (red) redshift counts within a 30 arcsec radius