

Cosmic Birefringence

Neutrino Mass

Primordial Magnetic Fields

Interstellar Dust

Elisa Russier

with Shaul^{SHERE}Any, Julien Tang, Reijo Keskitalo, Shamik Ghosh, Jacques Delabrouille, Sebastian Belkner, Mathieu Refite Yeilles autiefien Carron, Brandon Hensley, Kris Gorski Star Formation For the PICO collaboration

First Luminous

PICO: r science (arXiv 1902.10541)

Report

With **5 years** and 5σ confidence level:

- 1) Reject simplest inflation models $r > 5x 10^{-4}$
- 2) Detect $r = 5 \times 10^{-4}$

Previous Results (JCAP **06** (2023) 034) - white homogeneous noise, and 4 foreground models:

If r = 0.003, more than 15σ detection in **5 years**

If r = 0, 95% upper limits between 1 - 2 x 10⁻⁴ in **5 years**

Current project:

Realistic noise (+1/f) and as-designed scan strategy

Modeling sources of contamination for PICO

Instrument Characteristics

- Lowest noise, all-sky instrument among next generation experiments (e.g. ~10000 Planck years to reach PICO's sensitivity)
- Large frequency range with a single 13,000 detector focal plane

Sky coverage	Full sky	
Duration [years]	5	Large frequency
Frequency range [GHz]	21 — 799 GHz (21 bands)	range, high resolution,
Angular resolution [arcmin]	38.4 — 1.1	sensitivity
Noise sensitivity [µK.arcmin]	0.61	J

Data: Simulated observations

CMB: r = 0 and r = 0.003

Foreground maps:

PySM low, medium and high complexity

=

Noise:

TOAST: <u>20 mHz</u>, 50 mHz, 100 mHz, 200 mHz

BB

21 frequency maps: 21-799 GHz

B-mode spectra, fsky = 46%

Foreground models

Generated with PySM; three complexity levels

→ PySM 3 paper out soon!

	Low	Medium	High
Dust	MBB, fixed T _d = 19.6 K β_{d} = 1.48	MBB T _d , β_d from GNILC PR2	3D model of polarized dust emission with 6 layers
Synchrotron	Power law, fixed $\beta_s = -3.1$	Power law $\beta_{\rm s}$ from Haslam, S-PASS, WMAP	Curved power law $\beta_{\rm s}$ from Haslam, S-PASS, WMAP c _s from ARCADE
AME	Unpolarized	2% polarized	2% polarized

Results: r constraints

One simulation, medium complexity, 73% delensing:

 r = 0: σ(r) ~ 2.5 x 10⁻⁴ depending on fknee→ minor change compared to white homogeneous noise (mostly due to the noise inhomogeneity)

The impact of fknee is small: 20% increase in $\sigma(r)$ for 50 - 200 mHz

- r = 0.003, $\sigma(r) \sim 3 \times 10^{-4} = 10\sigma$ detection in 5 years
- No detection of significant bias for one CMB and noise simulation

	Assumptions and Methods	Results (all in 5 years)
PICO report (2019) arXiv:1902.10541 [astro-ph.IM]	Pen & paper forecasts	With a 5σ confidence level: Reject simplest inflation models r ~ 0.001 or detect r = 5 x 10 ⁻⁴
r forecasts with white homogeneous noise (2023) JCAP 06 (2023) 034	 Map-based simulations with white homogeneous noise Component separation methods: NILC and Commander Delensing: Power spectra level delensing Gaussian likelihood 	If r = 0, 95% upper limits between 1 - 2 x 10^{-4} If r = 0.003, more than 15 σ detection
r forecasts with realistic noise (current)	 Map making: destriping Realistic noise: 1/f + inhomogeneous noise (PICO scanning) Component separation method: NILC Rest same as above 	If $r = 0$, $\sigma(r) \sim 2.5 \times 10^{-4}$ depending on fknee If $r = 0.003$, $\sim 10\sigma$ detection

Conclusion

- PICO is a inflation probe space mission concept with 21 frequency bands, noise of 0.61 µK.arcmin over the full sky, and 5 years of observations
- We are evaluating r predictions in the presence of realistic noise and scan strategy
- We developed an end-to-end pipeline including map-making, component separation, delensing, and r likelihood

- Preliminary: we find a detection of r = 0.003 with more than 10σ confidence in 5 years
- Preliminary: polarization modulator is not necessary.