

A consistent, physical, and analytic model for CMB observables of reionisation

Adélie Gorce

REIONISATION & COSMIC DAWN

REIONISATION & COSMIC DAWN

REIONISATION & COSMIC DAWN

Doppler shift
 → T anisotropies *¬*

Thomson scattering

- Photon scattered away from the line of sight
 - \rightarrow T anisotropies $\, \image$
- Scattered light is polarised
 → E, B anistropies *¬*

CMB SCATTERING: HOMOGENEOUS REIONISATION

 $\tau = 0.054 \pm 0.007$ (Planck+2018)

See, e.g., Gorce+2022, Qin+2020, Stéphane's talk

Adélie Gorce – CMB France – December 2024

20.0

12.5

15.0

17.5

10.0

Redshift z

0.4

0.2

0.0*+* 0.0

2.5

5.0

7.5

CMB SCATTERING: PATCHY REIONISATION

Reionisation is a *patchy* process which imprints the CMB.

POLARISATION

+ y-distortions... (Iliev+2024)

see, e.g., Aghanim+1996, Dvorkin & Smith 2009, Roy+2018, 2020, Gorce+2020

Adélie Gorce – CMB France – December 2024

Thomson scattering

kSZ effect

kSZ effect

MODELLING REIONISATION HISTORY

Need a model to describe the cosmological time-evolution of sky-averaged ionised fraction

$$x_{e}(z) = \begin{cases} f_{e} & \text{for } z < z_{end} \\ f_{e} \left(\frac{z_{endy} - z}{z_{endy} - z_{end}} \right)^{\alpha} & \text{for } z > z_{end} \end{cases}$$

see, e.g., Douspis+2015, Planck XLVII 2016

Need a model to describe the cosmological time- and scale-evolution of electron density

Power spectrum of electron density fluctuations throughout EoR

Need a model to describe the cosmological time- and scale-evolution of electron density

Early times: power-law
$$P_{ee}(k, z) = \frac{\epsilon_0 X_e(z)^{-1/5}}{1 + [k/\kappa]^3 X_e(z)}$$

 $z = 10.1, x_{HII} = 0.0117$

- α_0 : constant amplitude on large scales \leftrightarrow variance of the field
 - κ : drop-off frequency \leftrightarrow minimal size of ionised regions

Need a model to describe the cosmological time- and scale-evolution of electron density

Depends on cosmology and four reionisation parameters (z_{re} , z_{end} , α_0 , κ)

ONGOING

But... model parameters have no clear link with astrophysics

- Recalibrate parameterisation on LoReLi simulations: 10 000 simulations of reionisation varying astrophysics, e.g., minimum halo mass to form stars, X-ray luminosity, ionising escape fraction... (Meriot+2023, 2024)
- Include a dependence on source properties

See next talk

The power spectrum of free electrons can be used to derive the reionisation observables

- Can also be used to derive the 21cm power spectrum (Georgiev, Gorce, & Mellema 2024)
 - Allows joint and cross-analyses between datasets... (Béguin, Liu, & Gorce 2022)

REIONISATION INFORMATION

There is information about reionisation in these imprints...

1. About global reionisation history

Gorce+2020, see, e.g., McQuinn+2005; Iliev+2007; Battaglia+2013; Park+2013...

REIONISATION INFORMATION

There is information about reionisation in these imprints...

- 1. About global reionisation history
- 2. About reionisation morphology (and effectively galaxy properties)

Adélie Gorce – CMB France – December 2024

REIONISATION INFORMATION

There is information about reionisation in these imprints...

- 1. About global reionisation history
- 2. About reionisation morphology (and effectively galaxy properties)

What is the constraining power of each observable?

Assume 10% errors on each observable and compute Cramer-Rao errors...

REIONISATION INFORMATION: FORECAST

There is information about reionisation in these imprints...

Assume SNR=10 for each observable and compute minimal errors...

Assume cosmic variance limited and 1' resolution telescope and compute minimal errors...

Gorce+ in prep

Adélie Gorce – CMB France – December 2024

REIONISATION INFORMATION: FORECAST

There is information about reionisation in these imprints...

Combining observables breaks degeneracies and gives tighter constraints

 $z_{\rm re}$

 $\log \alpha_0$

REIONISATION INFORMATION: FORECAST

There is information about reionisation in these imprints...

Combining observables breaks degeneracies and gives tighter constraints

 $z_{\rm re}$

 $\log \alpha_0$

For these models, kSZ only detectable observable in the near future....

Gorce+ in prep

- Illustrates the potential of CMB to constrain history and morphology of reionisation.
- Signal might be too weak

 \rightarrow Can also derive the 21cm x CMB spectra from the model! (ongoing...)

Thank you!

Gorce+ in prep

BACKUP SLIDES

The power spectrum of free electrons P_{ee}

Toy model: n ionised bubbles of radius R filling f % of a box

Late times: biased matter power spectrum $P_{ee}(k, z) = b_{\delta e}(k, z)^2 P_{\delta \delta}(k, z)$ for $b_{\delta e}(k, z)^2 = \frac{1}{2} e^{-k/k_f} + \frac{1}{1 + (gk/k_f)^{7/2}}$ $z = 7.2, x_{HII} = 0.4707$

Normalised derivatives:

