Implementation of HWP Intensity to Polarization Leakage in LiteBIRD simulation framework

Miguel José Gomes Eric Hivon

Institut d'Astrophysique de Paris

CMB-France 18/12/2024

Motivation

- The LiteBIRD mission intends to measure the B-mode CMB polarization to obtain a $\delta_r = 10^{-3}$.
- One way to contribute to this precision would be to have a continuously rotating half-wave plate (HWP) as first optical element for the telescopes [LiteBIRD Collaboration, 2022].
- However, due to an ongoing reformation plan, we have to assess precisely the interest of maintaining a HWP [see Ludovic Montier's talk]. Therefore we need to study the upsides and downsides of using HWP.
- In this work, the systematic effects arising from the non orthogonality of the incidence angle between HWP and detectors [Patanchon et al., 2023] were implemented into the simulation framework litebird sim (github.com/ litebird/litebird sim).

Half-Wave Plate (HWP)

- An HWP is a **birefringent material**: it has two refractive indexes.
- The velocity of light in one direction (fast axis) will be faster than in its orthogonal direction (slow axis), resulting in a 180° phase difference as it exits the HWP.
- This phase shift translates into a 2α polarization rotation (where α is the initial polarization angle).
- By continuously rotating an HWP, having at least two orthogonal detectors in order to measure the polarization is no longer needed.
- Also, since detectors have an inherent 1/f noise, which is higher at low f, polarization modulation puts the signal in higher frequencies (4 times the HWP rotation frequency) where the Signal-to-Noise Ratio (SNR) is better
- HWPs also allow to have reduced Intensity to Polarization (IP) leakage compared to the one from mismatches in the beams, gains or bandpasses.

Adapted from Kusaka et al., 2013

Describing HWP with Mueller Formalism

• **Stokes Parameters** describe the polarization state of radiation by:

$$I = |E_x|^2 + |E_y|^2 \qquad U = 2Re(E_x E_y^*)$$

$$Q = |E_x|^2 - |E_y|^2 \qquad V = -2Im(E_x E_y^*)$$

• The Mueller Matrix describes a optical system in terms of the stokes parameters:

$$\vec{S}_{out} = \vec{MS}_{in} \Rightarrow \begin{pmatrix} I_{out} \\ Q_{out} \\ U_{out} \\ V_{out} \end{pmatrix} = \begin{pmatrix} m_{II} & m_{IQ} & m_{IU} \\ m_{QI} & m_{QQ} & m_{QU} \\ m_{UI} & m_{UQ} & m_{UU} \\ m_{VI} & m_{VQ} & m_{VU} \end{pmatrix}$$

100% Q 100% V 100% U +U +V +Q Q > 0; U = 0; V = 0Q = 0; U > 0; V = 0Q = 0; U = 0; V > 0(a) -Q -U -V Q = 0; U = 0; V < 0Q = 0, U < 0, V = 0Q < 0; U = 0; V = 0(d) (b) m_{IV} m_{QV} Q_{in}

 m_{UV} m_{VI}

Mueller Formalism

• Mueller Matrix for an ideal HWP:

$$M_{ideal} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & -0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

• Mueller Matrix for a reference frame rotation:

$$M_{rot} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(2\gamma) & \sin(2\gamma) & 0 \\ 0 & -\sin(2\gamma) & \cos(2\gamma) & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

-1 coming from the flip in one of the axis

$$U = 2Re(E_x E_y^*)$$
$$V = -2Im(E_x E_y^*)$$

Incidence Angles

- The transmission and reflection of each component of a polarization state in a change in medium is dependent on the incidence angles of the incoming wave.
- For a birefringent material, this is more complex because there are two refraction indices, so the orientation w.r.t the fast and slow axis must be taken into account.
- Also, an HWP as an **anti-reflective** treatment, which further increases the complexity.
- Two angles (incidence along both axis) are needed in the TOD equation.

Horizontal direction ("slow-axis")

Vertical direction ("fast-axis")

Incidence Angles

- In our case, the horizontal component of the incident angle, is essentially dependent on the rotation angle of the halfwave plate, ρ .
- Because the incidence angle of an incoming wave in a HWP is kept unchanged in the outgoing wave, the vertical component of the incidence angle, Θ , is given from the relative position of the detector w.r.t the half-wave plate.
- We also define ψ as the rotation angle from the sky (ecliptic) to the focal plane coordinates.

Focal Plane coordinates

Time-Ordered Data (TOD) Equation

• The TOD equation for the optical system with a rotating HWP at a given incidence angle Θ [Patanchon et al., 2023] includes a Mueller matrix which is also dependent on the rotation angle of the HWP:

Detector projection angle

$$s = (1 \cos(2\psi_0) \sin(2\psi_0) 0) M(\Theta, \rho) R(2\psi) \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix}$$

$$M_{ij}(\Theta,\rho) = M_{ij}^{(0f)}(\Theta) + M_{ij}^{(2f)}(\Theta,2\rho) + M_{ij}^{(4f)}(\Theta,4\rho) + \dots$$

$$M_{ij}^{(2f)}(\Theta, 2\rho) = [M_0]_{ij}^{(2f)}(\Theta) \cos\left(2\rho + \phi_{ij}^{(2f)}\right)$$

$$M_{ij}^{(4f)}(\Theta, 4\rho) = [M_0]_{ij}^{(4f)}(\Theta) \cos\left(4\rho + \phi_{ij}^{(4f)}\right)$$

Mueller Matrix Elements

- 2023].
- We can interpolate these values for a given Θ by the expression:

$$M_{ij}^{(if)}(\Theta) = M_{ij}^{(if)}(0) + \left(M_{ij}^{(if)}(\Theta_{ref}) - M_{ij}^{(if)}(0)\right) \frac{sin^2}{sin^2}$$

• Where $a = 0.078 \ deg^{-1}$ [Patanchon et.al, 2023].

• The constant values $[M_0]$ are obtained through electromagnetic wave propagation simulations [Patanchon et al.,

$$\frac{a^2(a\Theta)}{a\Theta_{ref}}$$

CMB-France 2024

	$M_{xI}^{(0f)}$	$M_{xQ}^{(0f)}$	$M_{xU}^{(0f)}$	$M_{xV}^{(0f)}$
$M_{Ix}^{(0f)}$	0.961	8.83×10^{-5}	-7.87×10^{-6}	9.17×10^{-5}
$M_{Qx}^{(0f)}$	9.60×10^{-5}	$1.88 imes 10^{-4}$	4.87×10^{-4}	$-3.45 imes 10^-$
$M_{Ux}^{(0f)}$	4.39×10^{-6}	-4.63×10^{-4}	7.48×10^{-4}	0.0212
$M_{Vx}^{(0f)}$	-9.34×10^{-5}	-1.29×10^{-3}	-0.0242	-0.959

	$M_{xI}^{(2f)}$	$M_{xQ}^{(2f)}$	$M_{xU}^{(2f)}$	$M_{xV}^{(2f)}$
$M_{Ix}^{(2f)}$	4.89×10^{-6}	5.15×10^{-4}	5.16×10^{-4}	2.64×10^{-5}
$M_{Qx}^{(2f)}$	5.43×10^{-4}	3.10×10^{-3}	3.28×10^{-3}	0.0231
$M_{Ux}^{(2f)}$	5.42×10^{-4}	2.96×10^{-3}	3.24×10^{-3}	0.0230
$M_{Vx}^{(2f)}$	4.61×10^{-5}	0.0231	0.0231	1.04×10^{-3}

	$M_{xI}^{(4f)}$	$M_{xQ}^{(4f)}$	$M_{xU}^{(4f)}$	$M_{xV}^{(4f)}$
$M_{Ix}^{(4f)}$	1.09×10^{-7}	9.26×10^{-5}	9.25×10^{-5}	1.97×10^{-6}
$M_{Qx}^{(4f)}$	$8.86 imes10^{-5}$	0.959	0.959	0.0241
$M_{Ux}^{(4f)}$	$8.86 imes10^{-5}$	0.959	0.959	0.0241
$M_{Vx}^{(4f)}$	1.58×10^{-6}	0.0214	0.0214	$5.55~{\times}10^{-4}$

Values obtained for 10° reference angle [Patanchon et al., 2023]

3	

Map-Making

that:

by:

 $\hat{\mathbf{m}} = \left(\hat{A}^{\dagger}\right)$

true one.

• If the data stream, d, is a sum of the observed signal plus the noise factor, let us define a pointing matrix A such

$\mathbf{d} = A\mathbf{m} + n$

• Where m is the input map stokes vector. If there is no noise or it is white, the bin-average method gives us the map

$$(\hat{T}\hat{A})^{-1}\hat{A}^{T}\mathbf{d}$$

• Where \hat{A} is the expected pointing matrix (that may differ from the true one, A). Where \hat{m} is the output maps vector (I,Q,U), **d** is the TOD, and \hat{A} is the assumed pointing matrix, that does not necessarily correspond to the

Simulation: Input Sky Maps

- The sky maps were generated with the pysm3 library (github.com/galsci/pysm).
- They include the CMB + solar dipole + foregrounds (dust, synchrotron, free-free).
- nside = 512 (~3 million pixels)

• CMB only (ecliptic coordinates)

Simulation: Configuration

- 1 year simulation
- LiteBIRD default Scanning Strategy
- A single detector at $\Theta = 3.96^{\circ}$ observing the sky at 140GHz.
- Sampling Frequency: 19 Hz

Mueller Matrix:

TOD -> Ideal HWP Matrix except for the m_{OI} and m_{UI} elements.

Map-Making -> Ideal HWP Matrix.

The $\mathbf{m_{iV}}$ and $\mathbf{m_{Vj}}$ (i, j = [I, Q, U, V]) are assumed to be zero as we do not expect circular or elliptical polarization.

Results: Polarization Maps

• Leakage maps = output maps - input maps.

Results: Polarization Maps - 2f only

• Leakage maps = output maps - input maps.

Results: Polarization Maps - 4f only

• Leakage maps = output maps - input maps.

15

Results: Power Spectrum

- The plot shows the influence of each IP component on the BB spectrum, after applying a mask over the galactic plane ($f_{sky} = 0.5$).
- The spectrum is coherent with the results in [Patanchon et al., 2023].

Low Multipole Correction

Conclusions

- model, and 30m36s with the model.
- Parallelization of the code ongoing: 4 detectors, 4 cpus: 3m42s | 4 detectors, 1 cpu: 9m48s 3x faster
- The implementation results are coherent with the analysis done in [Patanchon et al., 2023]:
 - The 4f effects are the most important and cannot be ignored.
 - The effect of the **dipole on the IP leakage is dominant**.
 - At low monopoles, the leakage is stronger than the BB signal.
- - Detector non-linearity,
 - Varying loading,
 - HWP position uncertainties,
 - Non-circular beams,
 - • •

• The implementation of this model increases the time consumption of the TOD calculation by only $\sim 1\%$ with respect to the litebird sim. For 10 detectors, using a AMD EPYC 7702 64-Core Processor, the TOD computation took 29m16s without this

• We expect to coordinate with the Instrument Model (IMo) team in order to describe the HWP parameters in a coherent manner.

• This model will be merged into litebird_sim and be available to use and will be coupled with other systematic effects such as:

Additional Slides

20

From Jones to Mueller Formalism

• It can be obtained from a Jones Matrix by the relation:

$$M = A(J \otimes J^*)A^{-1} \qquad A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & i & -i & 0 \end{pmatrix}$$

• Jones Matrix with Systematic Effects:

$$J_{HWP} = \begin{pmatrix} 1+h_1 & \zeta_1 e^{i\chi_1} \\ \zeta_2 e^{i\chi_2} & -(1+h)e^{i\beta} \end{pmatrix}$$

21

Planck Mask (Galactic Coordinates)

From https://pla.esac.esa.int/#maps.

2018 mask used in the Plik likelihood for the Half-mission 1 (HM1) Q and U polarization maps at 143 GHz.

22