Valentin SAUVAGE **I**nstitut d'**A**strophysique **S**patiale, ORSAY, FRANCE

December 18, 2024 Colloque national CMB-France #6

Developing a Closed-Cycle Dilution Refrigerator for future CMB space missions Focus on the Structural & Thermal Model

Valentin SAUVAGE **I**nstitut d'**A**strophysique **S**patiale, ORSAY, FRANCE

December 18, 2024 Colloque national CMB-France #6

Developing a Closed-Cycle Dilution Refrigerator for future CMB space missions Focus on the Structural & Thermal Model

Valentin SAUVAGE Bruno MAFFEI Anaïs BESNARD Clémence DE JABRUN Mehdi BOUZIT

Context

REJECTED ONGOING ENDED

State of the art : the existing solutions

[1] Triqueneaux *et al.* [2006] [2] Kelley *et al.* [2006] [3] Shirron *et al.* [2016] [4] Ezoe *et al.* [2019]

Planck Space Telescope [1]

100 mK **O**pen-**C**ycle **D**ilution **R**efrigerator

Suzaku Space Telescope [2], Hitomi Space Telescope [3], XRISM Space Telescope [4]

50 mK

Adiabatic **D**emagnetization **R**efrigerator

The Open-Cycle Dilution Refrigerator

[1] Triqueneaux *et al.* [2006]

Planck Space Telescope [1]

100 mK **O**pen-**C**ycle **D**ilution **R**efrigerator

The Adiabatic Demagnetization Refrigerator

Suzaku Space Telescope [1], Hitomi Space Telescope [2], XRISM Space Telescope [3]

50 mK

Adiabatic **D**emagnetization **R**efrigerator

[2] Shirron *et al.* [2016] [3] Ezoe *et al.* [2019] [1] Kelley *et al.* [2006]

A magnetic field is applied to a paramagnetic material

The magnetic field is slowly reduced

7

Provides 100 mK

Continuous temperature

Operates indefinitely

Open Cycle Dilution Refrigerator

Adiabatic **Demagnetization Refrigerator**

TRL 5 or more

State of the art : the existing solutions

The limitations of the OCDR

Planck Space Telescope

LiteBIRD Space Telescope

Operation time: **2.5 years** Cooling power at 100 mK: **0.2 μW**

Operation time: **3 years** Cooling power at 100 mK: **2 μW**

3He: 12 000 liters STP | 4He: 36 000 liters STP

3He: 63 000 liters STP | 4He: 234 000 liters STP

Necessity of a closed-cycle that requires much less heliums

Adiabatic **Demagnetization** Refrigerator

Continuous Adiabatic **Demagnetization Refrigerator**

State of the art : the future solutions

LiteBIRD baseline

What about the space CCDR?

Component and/or breadboard functional verification in a laboratory environment

[1] Martin thesis [2009] [2] Chaudhry *et al.* [2012] [3] Volpe thesis [2014] [4] Sauvage *et al.* [2022], Sauvage thesis [2023]

Component and/or breadboard critical function verification in a relevant environment

TRL 4

TRL 5

….

Development of an **E**ngineering **M**odel in progress

The Structural and Thermal Model

- Hosts the ³He-⁴He dilution providing 2 μW of cooling power at 100 mK
- A heat sink at 1.7 K

- Supports a focal plane of 750 g on top of it
- Supports the vibrations of the launch (under 100 g), pushing the first mode above 140 Hz
- Limited size and mass (35 cm diameter, 25 cm height, 6 kg without the ³He circulator)
- Holds the various sub-systems (capillaries, still, ...)

Thermal aspects:

Mechanical aspects:

1.7 K

Support of the Planck HFI dilution DM of Athena X-iFU (Institut Néel) First design by IAS Last design by IAS

100 mK

The struts

Purpose:

- **Thermal insulation** of the 100 mK stage from the 1.7 K stage
- Strong enough to **withstand launch vibrations**

- First vibration mode > 140 Hz (good stiffness)
- Choice of an isostatic structure

Mechanical requirements:

Thermal requirements:

Strut sizing:

- Fixed length (limited by the requirements)
- Maximise IgZ/A (moment of inertia by surface area)

TOTAL: 7.8 μW from 1.7 K to 100 mK

$$
\dot{Q} = \frac{S}{L} \int_{T_1}^{T_2} \kappa(T) dT
$$

Carbon **F**iber **R**einforced **P**olymer

- Low thermal conductivity
- High resistance on tension/compression
- Lightweight

The end fittings

End fittings have to be glued to CFRP (no data of the glue characteristics available at low temperature)

Inheritance of Planck: **the glue have to work on compression to avoid breakage**

Differential contraction tested a 77 K:

- CFRP contracts more than aluminium
- The end fittings are glued inside the CFRP tubes (Hysol 9395)

Hysol 9395 is pressure-injected to avoid air bubbles

- Avoid mounting stresses (no bending)
- Once tightened, it behaves like a fixed connection

The thermal interfaces

1.7 K stage

- Light and machinable
- Thermal isolation of the 100 mK cold plate (4 x 10⁻⁶ W.m⁻¹.K⁻¹)
- Good thermal coupling at 1.7 K (4 W.m⁻¹.K⁻¹)

Same thermal contraction to avoid differential deformations

Choice of Al6061-T6:

The Structural and Thermal Model

 $\dot{\mathcal{Q}}_{\mathsf{injected}} = \dot{\mathcal{Q}}_{\mathsf{struts}} - \dot{\mathcal{Q}}_{\mathsf{wires}} \pm \dot{\mathcal{Q}}_{\mathsf{heat}}$ switch

The Structural and Thermal Model

From 1.7 K to 100 mK • Predicted: 7.8 μW • Measured: 2.7 μW

We can do better! Addition of intermediate stages to intercept heat

Thank you Kapitza resistance!

The Heat Exchanger Crowns

Heat interceptor collars Designed to be repositioned

1.7 K stage

HECs will be used to thermalize the electronic harnesses

The small struts

- No structural function
- Flexible blades used as end fittings to have isostatic hexapodes
- Fewer parts than in Planck's design (used for main struts) -> easier mounting

The Structural and Thermal Model

Reduced STM, from 1.7 K to 100 mK

- Predicted: 7.8 μW
- Measured: 2.7 μW

Full STM, from 1.7 K to 100 mK

- Predicted: 0.63 μW
- Measured: .. μW

What's next ?

Finalise the design to hold the free capillaries

Integration of the sub-systems (mixing chamber, capillaries, still, fountain pump, …)

Next step (next January) Design and integration

Planning

May 2025: Validated STM **December 2025:** First still prototype **June 2026:** Final still version **End of 2026:** First EM of the CCDR

Take home messages

- Accommodate future CMB missions requirements (e.g. LiteBIRD) but not only. CCDR could provides:
	- A continuous 100 mK (or 50 mK to be demonstrated)
	- A large cooling power (8 μW at 100 mK and 1 μW at 50 mK)
	- A compact and light system (3He circulator excluded)
	- A support for the focal plane
	- A thermalization for electronic harnesses
	- Compatible with any detector technology (e.g. no magnetic field)
- IAS is pushing the CCDR to TRL 5.
- We provide also properties on various materials

See you next time

- Cryogenics in April 25'
- Low Temperature Detectors in June 25'
- Whenever you want at IAS

Valentin SAUVAGE **I**nstitut d'**A**strophysique **S**patiale, ORSAY, FRANCE

December 18, 2024 Colloque national CMB-France #6

Developing a Closed-Cycle Dilution Refrigerator for future CMB space missions Focus on the Structural & Thermal Model

The state of the art

Principe of the dilution

Principe of the fountain pump

Principe of the fountain pump

