Colloque national CMB-France #6 **December 18, 2024**

Developing a Closed-Cycle Dilution Refrigerator for future CMB space missions Focus on the Structural & Thermal Model

Valentin SAUVAGE Institut d'Astrophysique Spatiale, ORSAY, FRANCE

Colloque national CMB-France #6 December 18, 2024

Developing a Closed-Cycle Dilution Refrigerator for future CMB space missions Focus on the Structural & Thermal Model

Valentin SAUVAGE

Bruno MAFFEI

Anaïs BESNARD

Valentin SAUVAGE Institut d'Astrophysique Spatiale, ORSAY, FRANCE

Clémence DE JABRUN

Mehdi BOUZIT

Context

REJECTED ONGOING ENDED

State of the art : the existing solutions

Planck Space Telescope [1]

100 mK **Open-Cycle Dilution Refrigerator**

[1] Triqueneaux et al. [2006] [2] Kelley *et al.* [2006] [3] Shirron *et al.* [2016] [4] Ezoe *et al.* [2019]

Suzaku Space Telescope [2], Hitomi Space Telescope [3], XRISM Space Telescope [4]

50 mK

Adiabatic Demagnetization Refrigerator

The Open-Cycle Dilution Refrigerator

Planck Space Telescope [1]

100 mK Open-Cycle Dilution Refrigerator

[1] Triqueneaux et al. [2006]

The Adiabatic Demagnetization Refrigerator

Suzaku Space Telescope [1], Hitomi Space Telescope [2], XRISM Space Telescope [3]

50 mK

Adiabatic Demagnetization Refrigerator

[1] Kelley *et al.* [2006] [2] Shirron *et al.* [2016] [3] Ezoe *et al.* [2019]

A magnetic field is applied to a paramagnetic material

The magnetic field is slowly reduced

State of the art : the existing solutions

Open Cycle Dilution Refrigerator

Provides 100 mK

Continuous temperature

Operates indefinitely

TRL 5 or more

IA Institut d'Astrophysiqu Orsay

Adiabatic Demagnetization Refrigerator

7

The limitations of the OCDR

Planck Space Telescope

Operation time: **2.5 years** Cooling power at 100 mK: 0.2 µW

LiteBIRD Space Telescope

Operation time: **3 years** Cooling power at 100 mK: 2 µW

³He: 12 000 liters STP

⁴He: 36 000 liters STP

³He: 63 000 liters STP

⁴He: 234 000 liters STP

Necessity of a closed-cycle that requires much less heliums

State of the art : the future solutions

Adiabatic Demagnetization Refrigerator

Continuous Adiabatic Demagnetization Refrigerator

Duval et al. [2020]

LiteBIRD baseline

What about the space CCDR?

TRL 4

Component and/or breadboard functional verification in <u>a laboratory environment</u>

[1] Martin thesis [2009] [2] Chaudhry et al. [2012] [3] Volpe thesis [2014] [4] Sauvage et al. [2022], Sauvage thesis [2023]

Structural and Thermal Model [4]

. . . .

Development of an **Engineering Model in progress**

TRL 5

Component and/or breadboard critical function verification in <u>a relevant environment</u>

The Structural and Thermal Model

Thermal aspects:

- Hosts the ³He-⁴He dilution providing 2 μW of cooling power at 100 mK
- A heat sink at 1.7 K

Mechanical aspects:

- Supports a focal plane of 750 g on top of it
- Supports the vibrations of the launch (under 100 g), pushing the first mode above 140 Hz
- Limited size and mass (35 cm diameter, 25 cm height, 6 kg without the ³He circulator)
- Holds the various sub-systems (capillaries, still, ...)

100 mK -

1.7 K

Support of the Planck HFI dilution

DM of Athena X-iFU (Institut Néel)

First design by IAS

Last design by IAS

The struts

Purpose:

- Thermal insulation of the 100 mK stage from the 1.7 K stage
- Strong enough to withstand launch vibrations

Mechanical requirements:

- First vibration mode > 140 Hz (good stiffness)
- Choice of an isostatic structure

Thermal requirements:

$$\dot{Q} = \frac{S}{L} \int_{T_1}^{T_2} \kappa(T) dT$$

Strut sizing:

- Fixed length (limited by the requirements)
- Maximise IgZ/A (moment of inertia by surface area)

Carbon Fiber Reinforced Polymer

- Low thermal conductivity
- High resistance on tension/compression
- Lightweight

TOTAL: 7.8 μW from 1.7 K to 100 mK

The end fittings

- Avoid mounting stresses (no bending)
- Once tightened, it behaves like a fixed connection

End fittings have to be glued to CFRP (no data of the glue characteristics available at low temperature)

Inheritance of Planck: the glue have to work on compression to avoid breakage

Differential contraction tested a 77 K:

- CFRP contracts more than aluminium
- The end fittings are glued inside the CFRP tubes (Hysol 9395)

Hysol 9395 is pressure-injected to avoid air bubbles

The thermal interfaces

Same thermal contraction to avoid differential deformations

Choice of Al6061-T6:

- Light and machinable
- Thermal isolation of the 100 mK cold plate (4 x 10⁻⁶ W.m⁻¹.K⁻¹)
- Good thermal coupling at 1.7 K (4 W.m⁻¹.K⁻¹)

1.7 K stage

The Structural and Thermal Model

 $\dot{Q}_{injected} = \dot{Q}_{struts} - \dot{Q}_{wires} \pm \dot{Q}_{heat switch}$

The Structural and Thermal Model

From 1.7 K to 100 mK • Predicted: 7.8 µW • Measured: 2.7 µW

Thank you Kapitza resistance!

We can do better! Addition of intermediate stages to intercept heat

The Heat Exchanger Crowns

Heat interceptor collars Designed to be repositioned HECs will be used to thermalize the electronic harnesses

The small struts

- No structural function
- Flexible blades used as end fittings to have isostatic hexapodes
- Fewer parts than in Planck's design (used for main struts) —> easier mounting

The Structural and Thermal Model

Reduced STM, from 1.7 K to 100 mK

- Predicted: 7.8 µW
- Measured: 2.7 μ W

Full STM, from 1.7 K to 100 mK

- Predicted: 0.63 µW
- Measured: .. μW

What's next?

Next step (next January)

Design and integration

Finalise the design to hold the free capillaries

Integration of the sub-systems (mixing chamber, capillaries, still, fountain pump, ...)

Planning

May 2025: Validated STM **December 2025:** First still prototype June 2026: Final still version End of 2026: First EM of the CCDR

Take home messages

- Accommodate future CMB missions requirements (e.g. LiteBIRD) but not only. CCDR could provides:
 - A continuous 100 mK (or 50 mK to be demonstrated)
 - A large cooling power (8 μ W at 100 mK and 1 μ W at 50 mK)
 - A compact and light system (³He circulator excluded)
 - A support for the focal plane
 - A thermalization for electronic harnesses
 - Compatible with any detector technology (e.g. no magnetic field)
- IAS is pushing the CCDR to TRL 5.
- We provide also properties on various materials

See you next time

- Cryogenics in April 25'
- Low Temperature Detectors in June 25'
- Whenever you want at IAS

Colloque national CMB-France #6 **December 18, 2024**

Developing a Closed-Cycle Dilution Refrigerator for future CMB space missions Focus on the Structural & Thermal Model

Valentin SAUVAGE Institut d'Astrophysique Spatiale, ORSAY, FRANCE

The state of the art

Principe of the dilution

Principe of the fountain pump

Principe of the fountain pump

