

Searching for Cosmological Collider in the Planck CMB Data

Wuhyun Sohn APC, Paris

Work in collaboration with: Dong-Gang Wang, James Fergusson, Paul Shellard, Petar Suman

18 December 2024 @ CMB-France

Arxiv: 2404.07203

The team

Dong-Gang Wang James Fergusson Paul Shellard Petar Suman

DAMTP, University of Cambridge, UK Work on ArXiv/JCAP: 2404.07203

- The leading paradigm of the early universe

- A period of accelerated expansion ($O(10^{26})$) after the Big Bang

- Solves the horizon, flatness and monopole problems

- What drives inflation?

Simplest model of inflation

- Inflation driven by...
 - * single scalar field ϕ
 - * slowly rolling down the potential
 - + canonical kinetic term, in Bunch-Davies vacua
- Successful in explaining:
 - ✓ accelerated expansion for 50-60 e-folds
 - ✓ seed primordial perturbations which...
 - ✓ have near scale-invariant spectra and...
 - ✓ are nearly Gaussian

Alternative models of inflation

- Inflation driven by...
 - * more than one fields?
 - * not necessarily slowly rolling down the potential?
 - + non-canonical kinetic term? excited initial states?
- Can also explain:
 - ✓ accelerated expansion for 50-60 e-folds
 - ✓ seed primordial perturbations which...
 - ✓ have near scale-invariant spectra and...
 - * observable non-Gaussian signatures!

Primordial non-Gaussianity (PNG)

The size and shape of the PNG let us probe early universe physics!

Measuring non-Gaussianity

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \propto f_{\mathrm{NL}}S(k_1,k_2,k_3)$$

non-linearity Shape function parameter

Cosmological Colliders

Cosmological (particle) colliders

* AI artist's imagination - unlikely that there were stars during inflation.

Inflationary universe as a particle collider

[Chen & Wang 2010, Baumann & Green 2011, Noumi et al 2012, Arkani-Hamed & Madacena 2015]

Correlators at the end of inflation can be sensitive to high energy physics $\lesssim O(10^{13})~{\rm GeV}$ during inflation

Inflationary scenarios

3-point correlations can be sourced by...

Window for probing **heavy fields** during inflation

Cosmological collider - the squeezed limit

Massive scalar exchange

 $m \ge \frac{3}{2}H$

 $0 < m < \frac{3}{2}H \longrightarrow$ Quasi-single-field inflation [Chen & Wang 2010]

Scalar-I, Scalar-II shapes developed using bootstrap techniques in this work

CMB Bispectrum

Cosmic Microwave Background

Quantum Fluctuations

Inflation

CMB

- Blackbody radiation from 300,000 after the Big Bang
- $-O(10^{-5})$ anisotropies in temperature & polarisation, linearly* related to primordial perturbations

$$a_{\ell m} \propto \int d^3 \mathbf{k} \, \zeta(\mathbf{k}) \, T_{\ell m}(\mathbf{k}) \cdots$$

- CMB bispectrum measures PNG:

$$\langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} \rangle = \underbrace{f_{\mathrm{NL}}}_{\text{Amplitude}} \underbrace{b_{\ell_1 \ell_2 \ell_3} \cdots}_{\text{Amplitude}}$$

CMB bispectrum estimation

- Bispectrum is noise dominated \rightarrow Linear template-fitting to estimate $f_{\rm NL}$

CMB-BEST

- Public code for CMB Bispectrum ESTimation

@ https://github.com/Wuhyun/CMB-BEST

- High-resolution, flexible and efficient!
- All heavy-lifting done in HPC clusters and provided as a data file
- Get Planck CMB constraints for arbitrary shapes in seconds!

[WS, Fergusson, Shellard 2211.15139]

CMB-BEST: demo

import cmbbest as best

Output:

D~

	shape_name	single_f_NL	single_sample_sigma	signal_to_noise	$f_{\rm NI}^{\rm local} = -1.1 \pm 5.3$
0	local	-1.090533	5.308609	-0.205427	
1	equilateral	-21.828939	48.986426	-0.445612	$f_{\rm NL}^{\rm equil} = -22 \pm 49$

Implications of PNG constraints

ex) $f_{
m NL}^{
m local} = -0.9 \pm 5.1$ (at 68% CL)

1. Direct bounds on models with similar bispectrum shapes:

- e.g. A model predicting $\,f_{
 m NL}=15\,$ is ruled out at a 3σ level
- Multi-field models with $f_{\rm NL} \sim O(1)$ are consistent with the CMB
- 2. Search for PNG signatures of given shape:
 - The signal-to-noise ratio: $\sigma_{\rm SNR}=0.9/5.1=0.18$
 - If, e.g., $\sigma_{\rm SNR} \geq 3$, this could've been the first detection of PNG

Results

Massive scalar exchange

Quasi-single-field

$$0 < m < \frac{3}{2}H$$

Look-elsewhere effect

- The more independent measurements we make,

the more likely it is to find a large signal by sheer luck

- To account for this effect, we draw random correlated samples from our measurements and compute the p-value

- Example with equilateral collider:

Adjusted signal-to-noise

0					
Shape	Template	$f_{\rm NL}~(68\%~{\rm CL})$	Raw S/N	Adjusted S/N	Section
Quasi-single field [3]	(2.6)	10 ± 26	0.37	0.12	4.1
Scalar exchange I	(2.15)	11 ± 13	0.86	0.67	4.1
Scalar exchange II	(2.20)	-91 ± 40	2.3	1.8	4.1
Heavy-spin exchange	(2.24)	-59 ± 32	1.9	1.2	4.2
Massive spin-2 exchange	(2.27)	-2.1 ± 1.1	1.9	0.90	4.2
Equilateral collider [59]	(2.32)	-178 ± 72	2.5	0.90	4.3
Low-speed collider [41]	(2.33)	-9 ± 10	0.89	0.29	4.3
Multi-speed PNG [64]	(2.34)	-3.1 ± 2.3	1.3	0.61	4.3
	N	lo deteo	ction	of PNG	V

Conclusion

Summary

- Extensive data analysis for cosmological colliders using Planck CMB
- Proposed new analytic templates for several scenarios
- Placed the most stringent constraints to date using CMB-BEST.
- No detection of PNG yet, accounting for the look-elsewhere effect
- Analysis pipeline and templates ready to be tested with future data!

Thank you! Wuhyun Sohn (sohn@apc.in2p3.fr)

FURAX @ SciPol

See Simon Biquard's talk tomorrow (10:20)

• Framework for Unified and Robust data analysis with JAX

- Efficient utilisation of CPUs and **GPU**s in parallel
- Code public & continues to be developed...

Github: CMBSciPol/furax

SciPo Scice from the large scale cosmic microwave background polarization structure Current Dev Team: Josquin Errard,

Artem Basyrov, Benjamin Beringue,

Simon Biquard, Pierre Chanial, Wassim Kabalan, Ema Tsang,

Amalia Villarubia, WS

Thank you!

Backup slides

Inflationary scenarios - the bootstrap approach

Symmetries, locality & unitarity \rightarrow the form of correlation functions

Spinning exchange

 $m_s \gg H \longrightarrow$ Heavy spin exchange [Dizgah et al 2018]

 $m_s \sim H \longrightarrow$ Massive spin-2 exchange template developed using bootstrap in this work

spin s

Hierarchy between the sound speeds c_s, c_σ

Spinning exchange

Heavy spin exchange

 $m_s \gg H$

Spin	$f_{\rm NL}$ constraint	Significance
0	-1.5 ± 5.8	0.26
1	-8 ± 45	0.18
2	-18 ± 10	1.8
3	-59 ± 32	1.8
4	-17 ± 16	1.1
6	-1.9 ± 6.7	0.28

 $m_s \sim H$

Equilateral collider $c_{\sigma} \ll c_s$

Low-speed collider $c_s \ll c_\sigma$

Multi-speed non-Gaussianity

Bispectrum and shape function

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{18}{5} f_{\mathrm{NL}} \frac{S(k_1, k_2, k_3)}{k_1^2 k_2^2 k_3^2} P_{\zeta}^2$$

CMB-BEST: core idea

CMB-BEST vs conventional methods [WS, Fergusson, Shellard 2211.15139]

Estimation Accuracy

	Separable templates (e.g. local, equilateral, orthogonal)	Non-separable templates (e.g. enveloped oscillations)	
KSW [Komatsu et al]	Exact	Does not apply	
Modal [Fergusson et al]	As good as the late-time mode expansion		
CMB-BEST (This work)	Exact	As good as the primordial mode expansion	
Flexible choice of mode functions & high-resolution			

CMB-BEST vs conventional methods

Computational cost (rough estimate)

	Separable templates (e.g. local, equilateral, orthogonal)	Non-separable templates (e.g. enveloped oscillations)	
KSW [Komatsu et al]	~1 per model	Does not apply	
Modal [Fergusson et al]		~ 30	
CMB-BEST (This work)		10,000	

[WS, Fergusson, Shellard 2211.15139]

Thoroughly optimised the algorithm and utilised HPC parallelism

CMB-BEST vs conventional methods [WS, Fergusson, Shellard 2211.15139]

Can I use the code?

	Separable templates (e.g. local, equilateral, orthogonal)	Non-separable templates (e.g. enveloped oscillations)	
KSW [Komatsu et al]	Yes! for standard shapes (e.g. AdriJD/ksw)	Does not apply	
Modal [Fergusson et al]	Talk to Jan	Talk to James or Petar	
CMB-BEST (This work) Yes! Github: Wuhyun		uhyun/CMB-BEST	

Get Planck CMB constraints on any input bispectra in seconds!

Primordial bispectrum

• PNG can create non-zero bispectrum:

 $\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \underbrace{f_{\mathrm{NL}}}_{(\mathrm{momentum conservation})} \underbrace{f_{\mathrm{NL}}}_{H_{\mathrm{NL}}} \underbrace{B^{(f_{\mathrm{NL}}=1)}(k_1, k_2, k_3)}_{(h_{\mathrm{NL}}}$

- Models predict distinct amplitude and shape of the bispectrum
- Bispectrum is defined on a 3D 'tetrapyd' domain:

