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Hubble tension

Discrepancy between
direct/indirect measurements
of HO:

o Latest SHOES analysis:

Hy=73.174+ 0.86kms~! Mpc~!

o  Planck (PR3) analysis:

Hy=67.27+ 0.60kms~! Mpc~!

If new physics, future CMB
experiments may be able to
detect it without any HO prior.
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Early Dark Fluid (EDF) approach (this analysis)

Using the Generalized Dark Matter approach (Hu 2001), any fluid can be described at background and

perturbation levels by choosing:

e Equation of state (or equivalently, the evolution of density with scale factor)
e Sound speed

e Anisotropic stress



Early Dark Fluid (EDF) - Density

H?*(a) = H§ [Qacpm(a) + Qepr(a)]

N
QEDF(CL) — Z Qz(a) Parameterization based on Moss et al. 2021
—1
Z 9245 6/
Qi(a) = XQacpm(as) 3
aP + a;

We use a set of N=50 spikes whose amplitudes are parameterized through Qz parameters.



Early Dark Fluid (EDF) - Density

H?*(a) = H§ [Qacpm(a) + Qepr(a)]

N
QEDF (a,) — Z Qz (CL) Parameterization based on Moss et al. 2021
—1
Z 9245 6/
Qi(a) = QQacom(a) | ——
aP + a;

PCA-like analysis to estimate the best constrained combination of Qz parameters.

=> Based on Fisher forecasts using Simons Observatory’s noise curves and sky coverage.



Early Dark Fluid (EDF) - Density
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Early Dark Fluid (EDF) - Sound speed

The sound speed of the fluid relates the rest-frame pressure and density perturbations:

5p(a, k) = 22(a, k)5p(a, k)

Some known cases:

e 1 forscalar fields
e sforradiation

e Ofor colddark matter



Early Dark Fluid (EDF) - Sound speed

The sound speed of the fluid relates the rest-frame pressure and density perturbations:
. _9 .
0p(a, k) =¢i(a,k)ip(a, k)
We let it vary and probe its scale factor dependence:

c% ifa<a; =107°
=2 _ 2 9 2\ log a—logay ;
Cs(a) =qci+ (5 — ) ionay e, Ha1<a<ap
c% ifa>ay =103



Early Dark Fluid (EDF) - Sound speed

The sound speed of the fluid relates the rest-frame pressure and density perturbations:
. _9 .
0p(a, k) =¢i(a,k)ip(a, k)

We let it vary and probe its scale factor dependence:

e ifa<a;=10"°
=2 _ 2 9 2\ log a—logay ;
Cs(a) =qci+ (5 — ) ionay e, Ha1<a<ap
c% ifa>ay =103

Our model therefore has 6 additional parameters:

e 4amplitudes of the density modes: (dy, d3, ds, d4)

e 2sound speed parameters: c% and c%



Test cases

Is our model able to reproduce the effect of some specific theoretical models on the CMB power spectra?
4 Test cases:

e Axion-like early dark ener
y gy EDE
e Newearlydarkenergy

e Additional neutrinos (N_.)

Dark radiati
e Self-interacting dark radiation } arkradiation
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Test cases - Methodology

We generate fiducial TT, EE and TE power spectra using (modified) CAMB/CLASS for the 4 test cases (+LCDM)
o Best-fit EDE models from Poulin et al. 2018 and Cruz et al. 2023.

o 95% upper-limit from Planck for the density of dark radiation models.

We use our EDF model implemented in CAMB to fit those spectra
o assuming Simons Observatory’s noise

o  running MCMC chains with COBAYA.
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s ACDM
I NEDE
I Axion-like EDE

Results - EDE

e Both EDE models mainly reproduced

through the third mode

e Sound speed and H quite well reproduced

f A
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\/Q\\ = SIDR
Results - Dark radiation oo
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Constraints with Planck

e First mode can take high values if
sound speed of the order of ¥4 => looks
closely to a dark radiation component.

e Highly degenerate with H and large H,
values can be reached.

e Not statistically significant and even

slightly disfavoured if we look at AIC:

ACDM EDF
2 10963.7 10960.0
AAIC - —8.3
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Conclusion

e EDF model can reproduce a variety of specific theoretical models.

e EDF could also capture deviations from LCDM not corresponding to existing theoretical models.
e Analysis with Planck data shows good consistency with LCDM and no preference for EDF.

e EDFisnotruled out either and significant deviations from LCDM are possible.

e High HO values can be obtained, especially something that looks like a dark radiation.

e Volume effects will be less severe for Simons Observatory than they are for Planck.
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Back-up slides



Early universe solutions

B = T D2k

e Angular acoustic scale 0* measured in the CMB at 0.05% accuracy (Planck)

e Increasing [y leadsto adecrease of D (Z*)

e |deaof early physics solutions: Add a new component before recombination
o Decreases T'x

o Keeps 6, fixed
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Results - Goodness of fits

Theoretical model xapr Xicom  AX°  AAIC  fimax
Axion-like EDE ~ 4.58  30.13 —25.55 13.55 0.068
NEDE 10.33  36.72 —26.39 14.39 0.120

Nest 209 1629 —-14.20 2.2  0.037

SIDR 0.81  20.08 —19.27 7.27 0.037

AIC =2k —2log L

18



Test cases - EDE

EDE consists in the addition of a new

scalar field:

e Frozen at very high redshift
(z>103-10%

=> constant density
e Dynamic at lower redshifts

=> dilutes faster than matter
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Test cases - Dark radiation

4 4/3
— N,
(11) eff

e Additional neutrinos: free-streaming => have anisotropic stress, need to describe the full Boltzmann hierarchy

7
PR = P~ 1+§

Similar idea: adding some density in the early Universe

e Self-interacting dark radiation => non free-streaming, no anisotropic stress
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\ I EDF
\\ I EDF with Jeffreys-like prior
\ \\ —— NACDM
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Results - Density reconstructions
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Constraints with Planck

Very significant volume effects

e Median HO much larger than the value
used to generate the LCDM mock data.

e Preference for sound speed of Y.

e Overall, the analysis shows very good

consistency with LCDM.

N Il EDF fit to ACDM data (covariance Planck 2018)
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