Mapping the hot baryonic gas across the entire sky with LiteBIRD

Mathieu Remazeilles Instituto de Física de Cantabria (CSIC-UC)

JCAP 12 (2024) 026

Colloque National CMB-France #6 IHP, Paris, Dec 18-19, 2024

LiteBIRD overview

FreeBIRD

第2段液体水素タンク Second Stage

Second Stage

第1段液体酸素タンク First Stage Lox Tan

第1段液体水素タンク First Stage LH2 Tan

Rocket

直1段エンジンIE-9

LiteBIRD collaboration

PTEP 2023

- Lite (Light) spacecraft for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission was selected in May 2019 to be launched by JAXA's H3 rocket.
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B*-modes
- Final combined sensitivity: 2.2 μ K·arcmin

Dec 18th-19th, 2024

Colloque National CMB-France #6

ournal of Cosmology and Astroparticle Physics An IOP and SISSA iou

RECEIVED: July 26, 2024 REVISED: October 10, 2024 Accepted: October 21, 2024 Published: December 11, 2024

> \bigcirc

 \bowtie Ю

N

 \frown N \bigcirc

N

 \bigcirc N 5

LiteBIRD science goals and forecasts. Mapping the hot gas in the Universe

The LiteBIRD collaboration

M. Remazeilles ⁽²⁾ , ^{1,*} M. Douspis, ² J.A. Rubiño-Martín, ^{3,4} A.J. Banday, ⁵ J. Chluba, ⁶
P. de Bernardis, ^{7,8} M. De Petris, ^{7,8} C. Hernández-Monteagudo, ³ G. Luzzi, ⁹
J. Macias-Perez, ¹⁰ S. Masi, ^{7,8} T. Namikawa, ¹¹ L. Salvati, ² H. Tanimura, ¹¹ K. Aizawa, ¹²
A. Anand, ¹³ J. Aumont, ⁵ C. Baccigalupi, ^{14,15,16} M. Ballardini, ^{17,18,19} R.B. Barreiro, ¹
N. Bartolo, ^{20,21,22} S. Basak, ²³ M. Bersanelli, ^{24,25} D. Blinov, ^{26,27} M. Bortolami, ^{17,18}
T. Brinckmann, ¹⁷ E. Calabrese, ²⁸ P. Campeti, ^{18,29,30} E. Carinos, ⁵ A. Carones, ¹⁴
F.J. Casas, ¹ K. Cheung, ^{6,31,32,33} L. Clermont, ³⁴ F. Columbro, ^{7,8} A. Coppolecchia, ^{7,8}
F. Cuttaia, ¹⁹ T. de Haan, ^{35,36} E. de la Hoz, ^{37,1,38} S. Della Torre, ³⁹
P. Diego-Palazuelos, ^{29,38} G. D'Alessandro, ^{7,8} H.K. Eriksen, ⁴⁰ F. Finelli, ^{19,41}
U. Fuskeland, ⁴⁰ G. Galloni, ^{17,13} M. Galloway, ⁴⁰ M. Gervasi, ^{42,39} R.T. Génova-Santos, ^{3,4}
T. Ghigna, ³⁶ S. Giardiello, ²⁸ C. Gimeno-Amo, ¹ E. Gjerløw, ⁴⁰ R. González González, ³
A. Gruppuso, ^{19,41} M. Hazumi, ^{36,35,43,11,44} S. Henrot-Versillé, ⁴⁵ L.T. Hergt, ⁴⁶ D. Herranz, ¹
K. Kohri, ³⁵ E. Komatsu, ^{29,11} L. Lamagna, ^{7,8} M. Lattanzi, ¹⁸ C. Leloup, ¹¹ F. Levrier, ⁴⁷
A.I. Lonappan, ⁴⁸ M. López-Caniego, ^{49,50} B. Maffei, ² E. Martínez-González, ¹
S. Matarrese, 20,21,22,51 T. Matsumura, 11 S. Micheli, 7 M. Migliaccio, 13,52 M. Monelli, 29
L. Montier, 5 G. Morgante, 19 Y. Nagano, 53 R. Nagata, 43 A. Novelli, 7 R. Omae, 53
L. Pagano, 17,18,2 D. Paoletti, 19,41 V. Pavlidou, 26,27 F. Piacentini, 7,8 M. Pinchera, 54
G. Polenta, ⁹ L. Porcelli, ⁵⁵ A. Ritacco, ^{52,47} M. Ruiz-Granda, ^{1,38} Y. Sakurai, ^{56,11} D. Scott, ⁴⁶
M. Shiraishi, ⁵⁶ S.L. Stever, ^{53,11} R.M. Sullivan, ⁴⁶ Y. Takase, ⁵³ K. Tassis, ^{26,27} L. Terenzi, ¹⁹
M. Tomasi, ^{24,25} M. Tristram, ⁴⁵ L. Vacher, ¹⁴ B. van Tent, ⁴⁵ P. Vielva, ¹ I.K. Wehus, ⁴⁰
B. Westbrook, 31 G. Weymann-Despres, 45 E.J. Wollack, 57 M. Zannoni 42,39 and Y. Zhou 36

¹Instituto de Fisica de Cantabria (IFCA, CSIC-UC). Avenida los Castros SN, 39005, Santander, Spain ²Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405, Orsay, France ³Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain

*Corresponding author

© 2024 IOP Publishing Ltd and Sissa Medialab. All rights, including for text and data mining, AI training, https://doi.org/10.1088/1475-7516/2024/12/026 and similar technologies, are reserved.

- Unlike cluster catalogues, which only capture thermal Sunyaev-Zeldovich (SZ) emission from massive, well-resolved clusters, the Compton y-map probes the entire hot gas distribution over the sky.
- The Planck Compton y-map is the first and unique all-sky map of the thermal SZ effect to date.
- Despite low angular resolution for galaxy cluster science, LiteBIRD offers enhanced sensitivity, full-sky coverage, and multiple frequency bands compared to Planck.
- LiteBIRD is well-positioned to deliver the next all-sky thermal SZ map, with reduced foreground contamination compared to Planck.
 - Important legacy data from LiteBIRD \rightarrow
 - Important impact on cosmology and astrophysics \rightarrow
- We propose to combine both LiteBIRD and Planck channels to leverage the advantages of each experiment for optimal y-map reconstruction and improved constraints on σ_8 .

Sky simulations for LiteBIRD and Planck

Combining LiteBIRD and Planck channels for component separation with NILC

NILC: Needlet Internal Linear Combination Delabrouille et al, A&A (2009)

> NILC enables the combination of multi-resolution data from multiple different experiments

Remazeilles, Aghanim, Douspis MNRAS (2013)

LiteBIRD channels enhance foreground cleaning, while Planck channels provide resolution beyond LiteBIRD beam limits

-5.0

Thermal SZ y-map reconstruction

JCAP 12 (2024) 026

M. Remazeilles

Thermal SZ y-map reconstruction

Thermal SZ y-map reconstruction

JCAP 12 (2024) 026

-5.0

-5.0

Thermal SZ y-map reconstruction

Comparison of y-maps around Coma

Residual noise contamination

Residual CIB contamination

SZ power spectrum and residuals Planck

SZ power spectrum and residuals LiteBIRD + Planck

Noise and foreground residuals reduced by an order of magnitude at large and intermediate scales

One-point PDF of y-map and residuals

Reduction of noise and foreground residuals from Planck to LiteBIRD, with further reduction in joint LiteBIRD-Planck y-map

M. Remazeilles

Impact of LiteBIRD 1/f noise

LiteBIRD 1/f noise reduced below the SZ signal at all multipoles after component separation with NILC

Cosmological parameter constraints

Non-Gaussian contribution to SZ cosmic variance included

Cross-correlating the LiteBIRD SZ map with the CMB-S4 optical depth map

(following Namikawa, Roy, Sherwin, Battaglia, Spergel, PRD 2021)

LiteBIRD will provide preliminary evidence of the faint thermal SZ signal from pachy reionisation with a modest SNR of 1.6

Perspectives on diffuse SZ science from a clean all-sky LiteBIRD y-map

- Relativistic SZ effect and gas temperature (capitalizing on LiteBIRD's high frequencies > 300 GHz)
- ISW-SZ cross-correlation at large angular scales
- CMB monopole y-distortion
- Two-halo contribution to SZ power spectrum at low multipoles
- Testing theories of structure formation via hot-gas tomography from SZ-LSS cross-correlations
- Quadrupole-like SZ effect from structures in local Universe such as the Milky Way or local supercluster
- SZ-coloured dipole-modulated CMB anisotropies via SZ-CMB cross-correlation as an alternative measurement of the dipole with higher significance than Planck Collaboration LVI (2020)
- Testing decaying dark matter models with SZ power spectrum

Relativistic SZ effect

- Capitalizing on LiteBIRD + Planck high frequencies above 300 GHz to disentangle the relativistic SZ effect
- LiteBIRD narrow bandpasses will also help detection

See "Remazeilles & Chluba, MNRAS (2020)" "Remazeilles & Chluba, 2410.02488 (2024)"

M. Remazeilles

Two-halo contribution to diffuse SZ effect

- Expected y-T cross-correlation at large angular scales between SZ and CMB temperature anisotropies due to the ISW effect
- LiteBIRD all-sky SZ map provides access to largest angular scales

See "Taburet, Hernandez-Monteagudo, Aghanim, Douspis, and Sunyaev, MNRAS (2011)"

Conclusions

- An all-sky map of the thermal SZ Compton y-parameter from LiteBIRD will probe the hot baryonic gas distribution across the entire sky
- LiteBIRD's enhanced sensitivity and frequency coverage outperform Planck's SZ mapping results over the entire sky
- The combined LiteBIRD-Planck SZ map leverages both Planck's angular resolution and LiteBIRD's sensitivity
- Noise and foreground contamination reduced by a factor of 10 at large and intermediate scales in the combined LiteBIRD-Planck SZ map compared to the Planck SZ map
- Constraints on $S_8 = \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$ improved by 15% compared to Planck SZ map
- Many perspectives on diffuse SZ science from the all-sky LiteBIRD y-map

Backup

Leveraging LiteBIRD sensitivity and Planck resolution for the y-map

LiteBIRD enhances foreground cleaning, while Planck provides resolution beyond the LiteBIRD beam limits

SZ power spectrum and residuals Planck

SZ power spectrum and residuals LiteBIRD + Planck

Noise and foreground residuals reduced by an order of magnitude at large and intermediate scales

LiteBIRD overview

LiteBIRD reformation phase

- After the ISAS/JAXA mission definition review, LiteBIRD is under rescope studies to consolidate the mission's feasibility with the same scientific objectives.
- The LiteBIRD collaboration will spend approximately one year (~ late 2025) on the studies of the reformation plan.

Dec 18th-19th, 2024

Colloque National CMB-France #6

第2段液体水素タンク Second Stage

Second Stage Engine LE-5B-

ロケット ブースタ SRB-3 Solid Rocket Booster

LiteBIRD collaboration

PTEP 2023

Remazeilles & Chluba, arXiv:2410.02488

Which SED for tSZ deprojection in CMB maps?

Planck SZ-free CMB maps stacked on clusters

Evidence for relativistic SZ effect in Planck CMB maps with an average cluster temperature of $T_e = 5 \text{ keV}$

$$I_{\nu}^{\,\text{rSZ}}(\vec{n}) = f(\nu, \bar{T}_{\text{e}}) \, y(\vec{n}) \, + \partial_{T_{\text{e}}} f(\nu, \bar{T}_{\text{e}}) \left[y(\vec{n}) (T_{\text{e}}(\vec{n}) - \bar{T}_{\text{e}}) \right] + \cdots$$

Planck rSZ moment maps stacked on clusters for different pivot \overline{T}_{e}

Application of Remazeilles & Chluba, MNRAS (2020) to Planck data