Cosmology with Rayleigh scattering of the CMB

Benjamin Beringue - APC, CNRS - CMB France #6 - December 2024

Science from the large scale cosmic microwave background polarization structure

Rayleigh scattering of the CMB Outline

- What is Rayleigh scattering of the CMB?
- How can this effect be modelled?
- Can we detect it with upcoming surveys?
- Does it help constraining cosmology?

$$\sigma_R(\nu) = \sigma_T \left[\sum_{j=2}^{\infty} f_{1j} \frac{\nu^2}{\nu_{1j}^2 - \nu^2} \right]^2$$

Rayleigh scattering is the scattering of electromagnetic radiation by particles with a size much smaller than the wavelength of the radiation.

frequency dependent !!

$$\sigma_R(\nu) \approx \sigma_T \left[\left(\frac{\nu}{\nu_{\text{eff}}} \right)^4 + \alpha \left(\frac{\nu}{\nu_{\text{eff}}} \right)^6 + \beta \left(\frac{\nu}{\nu_{\text{eff}}} \right)^8 + . \right]$$

[Lewis 16, Yu et al. 01]

$\dot{\tau} = a n_e \sigma_T \rightarrow \dot{\tau}(\nu) = a n_e \sigma_T + a \left[n_{\rm H} + 0.1 n_{\rm He} \right] \sigma_R(\nu)$

$$\dot{\tau} = an_e\sigma_T \to \dot{\tau}(\nu) = an_e\sigma_T$$

$n_e \sigma_T + a \left[n_{\rm H} + 0.1 n_{\rm He} \right] \sigma_R(\nu)$

$$\dot{\tau} = an_e\sigma_T \to \dot{\tau}(\nu) = an_e\sigma_T$$

This leads to:

- An increase of Silk damping on small scales.
- A boost on large scales in polarisation, due to the visibility function being shifted towards low redshift where the local quadrupole is larger.
- A shift in the location of the acoustic peaks

[BB et al 21, Lewis 16, Yu et al 01]

$n_e \sigma_T + a \left| n_{\rm H} + 0.1 n_{\rm He} \right| \sigma_R(\nu)$

 $a_{\ell m}^{X}(\nu) = a_{\ell m}^{X,\text{CMB}} + \left(\frac{\nu}{\nu_{0}}\right)^{4} \Delta a_{\ell m}^{X_{4}} + \mathcal{O}\left(\frac{\nu}{\nu_{0}}\right)^{6}$

 $a_{\ell m}^X(\nu) = a_{\ell m}^{X,\text{CMB}} +$

$$\left(\frac{\nu}{\nu_0}\right)^4 \Delta a_{\ell m}^{X_4} + \mathcal{O}\left(\frac{\nu}{\nu_0}\right)^6$$

$$\sigma_{R}(\nu) \approx \sigma_{T} \left[\left(\frac{\nu}{\nu_{\text{eff}}} \right)^{4} + \alpha \left(\frac{\nu}{\nu_{\text{eff}}} \right)^{6} + \beta \left(\frac{\nu}{\nu_{\text{eff}}} \right)^{8} + \right]$$

For small frequencies, Rayleigh scattering can be modelled perturbatively:

$$a_{\ell m}^{X}(\nu) = a_{\ell m}^{X,\text{CMB}} + \left(\frac{\nu}{\nu_{0}}\right)^{4} \Delta a_{\ell m}^{X_{4}} + \mathcal{O}\left(\frac{\nu}{\nu_{0}}\right)^{6}$$

The power spectra read:

$$C_{\ell}^{XY}(\nu_1,\nu_2) = C_{\ell}^{XY,\text{CMB}} + \frac{1}{\nu_0^4} \left(\nu_1^4 C_{\ell}^{XY_4} + \nu_2^4 C_{\ell}^{X_4Y}\right) + \left(\frac{\nu_1\nu_2}{\nu_0^2}\right)^4 C_{\ell}^{X_4Y_4} + \cdots$$

[BB et al 21, Lewis 16]

For small frequencies, Rayleigh scattering can be modelled perturbatively:

$$a_{\ell m}^{X}(\nu) = a_{\ell m}^{X,\text{CMB}} + \left(\frac{\nu}{\nu_{0}}\right)^{4} \Delta a_{\ell m}^{X_{4}} + \mathcal{O}\left(\frac{\nu}{\nu_{0}}\right)^{6}$$

The power spectra read:
$$C_{\ell}^{XY}(\nu_{1},\nu_{2}) = \boxed{C_{\ell}^{XY,\text{CMB}}} + \frac{1}{\nu_{0}^{4}} \left(\nu_{1}^{4}C_{\ell}^{XY_{4}} + \nu_{2}^{4}C_{\ell}^{X_{4}Y}\right) + \left(\frac{\nu_{1}\nu_{2}}{\nu_{0}^{2}}\right)^{4}C_{\ell}^{X_{4}Y_{4}} + \cdots$$

[BB et al 21, Lewis 16]

$$a_{\ell m}^{X}(\nu) = a_{\ell m}^{X,\text{CMB}} + \left(\frac{\nu}{\nu_{0}}\right)^{4} \Delta a_{\ell m}^{X_{4}} + \mathcal{O}\left(\frac{\nu}{\nu_{0}}\right)^{6}$$

The power spectra read:
$$Primary \text{ CMB}$$
$$C_{\ell}^{XY}(\nu_{1},\nu_{2}) = C_{\ell}^{XY,\text{CMB}} + \frac{1}{\nu_{0}^{4}} \left(\nu_{1}^{4}C_{\ell}^{XY_{4}} + \nu_{2}^{4}C_{\ell}^{X_{4}Y}\right) + \left(\frac{\nu_{1}\nu_{2}}{\nu_{0}^{2}}\right)^{4} C_{\ell}^{X_{4}Y_{4}} + \cdots$$
$$\nu_{4} \text{ cross spectra}$$

[BB, Meerburg, Meyers and Battaglia 21]

[BB, Meerburg, Meyers and Battaglia 21]

Can we detect it with upcoming surveys? Planck, SO, CCAT

Primary E x RS T spectrum

Primary E x RS E spectrum

Can we detect it with upcoming surveys? Planck, SO, CCAT

Primary E x RS T spectrum

	Planck	SO LAT	CCA
$T_{\rm CMB} \times T_{\rm RS}$	4.7	0.7	(
$E_{\rm CMB} \times E_{\rm RS}$	0.1	0.6	(
$T_{\rm CMB} \times E_{\rm RS}$	0.1	0.4	(
$E_{\rm CMB} \times T_{\rm RS}$	1.2	0.1	

Primary E x RS E spectrum

Can we detect it with upcoming surveys ? Planck, SO, CCAT

Can we detect it with upcoming surveys ? Upcoming surveys

	Planck	SO LAT	CCAT-prime	CCAT-prime : $\ell_{\rm knee}/2$	CCAT-prime : $2 \times N_{det}$	CMB-S4	LiteBIRD
$T_{\rm CMB} \times T_{\rm RS}$	4.7	0.7	0.3	1.2	0.3	2.0	25
$E_{\rm CMB} \times E_{\rm RS}$	0.1	0.6	0.6	0.7	0.9	1.8	1.4
$T_{\rm CMB} \times E_{\rm RS}$	0.1	0.4	0.2	0.4	0.3	1.0	0.9
$E_{\rm CMB} \times T_{\rm RS}$	1.2	0.1	0.1	0.2	0.1	0.4	10

Can we detect it with upcoming surveys? **Upcoming surveys**

	Planck	SO LAT	CCAT-prime	CCAT-prime : $\ell_{\rm knee}/2$	CCAT-prime : $2 \times N_{det}$	CMB-S4	LiteBIRD
$T_{\rm CMB} \times T_{\rm RS}$	4.7	0.7	0.3	1.2	0.3	2.0	25
$E_{\rm CMB} \times E_{\rm RS}$	0.1	0.6	0.6	0.7	0.9	1.8	1.4
$T_{\rm CMB} \times E_{\rm RS}$	0.1	0.4	0.2	0.4	0.3	1.0	0.9
$E_{\rm CMB} \times T_{\rm RS}$	1.2	0.1	0.1	0.2	0.1	0.4	10

Forecasts after component separation (cILC) including extragalactic foregrounds

		SNR			
	Configuration	TT	TE	ET	
	CCATp+SO+Planck	1.1	0.3	0.3	
	LiteBIRD	1.9	0.1	0.9	
	LiteBIRD+CCATp+Planck	2.2	0.2	0.9	
>	PICO	85	17	43	

- Rayleigh scattering directly probes the Helium fraction $Y_{\rm He}.$

- Rayleigh scattering directly probes the Helium fraction $Y_{\rm He}.$
- Rayleigh scattering produces different last scattering surface and fluctuation spectrum at every frequencies.

- Rayleigh scattering directly probes the Helium fraction $Y_{\rm He}.$
- Rayleigh scattering produces different last scattering surface and fluctuation spectrum at every frequencies.
- Fixed length scales appear at different angular scales for primary and Rayeligh scatters components.

- Rayleigh scattering directly probes the Helium fraction $Y_{\rm He}.$
- Rayleigh scattering produces different last scattering surface and fluctuation spectrum at every frequencies.
- Fixed length scales appear at different angular scales for primary and Rayeligh scatters components.
- Ratio of these angular scales helps constraining parameters.

Does it helps constraining cosmology? **PICO** forecasts

		$\Omega_b h^2$	$\Omega_c h^2$	$H_0[{ m km/s/Mpc}]$	$10^{9}A_{s}$	n_s	au
	PICO no Rayleigh	2.39×10^{-5}	2.83×10^{-4}	$1.08 imes 10^{-1}$	6.62×10^{-3}	1.40×10^{-3}	1.77×10^{-3}
	PICO with Rayleigh	1.93×10^{-5}	2.48×10^{-4}	9.09×10^{-2}	6.34×10^{-3}	1.31×10^{-3}	1.68×10^{-3}
	Improvement	19.29%	12.28%	16.11%	4.24%	6.69%	5.28%
	Primary-only CVL	1.02×10^{-5}	1.75×10^{-4}	$6.57 imes 10^{-2}$	5.35×10^{-3}	9.88×10^{-4}	1.45×10^{-3}
	PICO no Rayleigh	2.30×10^{-5}	2.30×10^{-4}	$8.78 imes 10^{-2}$	6.48×10^{-3}	1.27×10^{-3}	1.77×10^{-3}
TTTEEE +	PICO with Rayleigh	1.91×10^{-5}	2.14×10^{-4}	$7.85 imes 10^{-2}$	6.07×10^{-3}	1.17×10^{-3}	1.67×10^{-3}
lensing	Improvement	16.98%	6.92%	10.52%	6.36%	7.61%	5.51%
	Primary-only CVL	7.94×10^{-6}	1.61×10^{-4}	6.06×10^{-2}	5.21×10^{-3}	7.02×10^{-4}	1.43×10^{-3}
	PICO no Rayleigh	2.31×10^{-5}	$2.30 imes 10^{-4}$	$8.79 imes 10^{-2}$	6.49×10^{-3}	1.26×10^{-3}	1.77×10^{-3}
Inneina	PICO with Rayleigh	1.92×10^{-5}	2.14×10^{-4}	$7.85 imes 10^{-2}$	6.07×10^{-3}	1.17×10^{-3}	1.67×10^{-3}
	Improvement	16.84%	7.07%	10.71%	6.45%	7.54%	5.62%
RRIN	Primary-only CVL	8.00×10^{-6}	1.61×10^{-4}	6.07×10^{-2}	5.22×10^{-3}	7.01×10^{-4}	1.44×10^{-3}
	PICO no Rayleigh	2.30×10^{-5}	1.91×10^{-4}	$7.29 imes 10^{-2}$	5.87×10^{-3}	1.21×10^{-3}	1.56×10^{-3}
	PICO with Rayleigh	1.90×10^{-5}	1.82×10^{-4}	$6.66 imes 10^{-2}$	5.60×10^{-3}	1.10×10^{-3}	1.50×10^{-3}
	Improvement	17.51%	4.73%	8.62%	4.64%	8.80%	3.52%
RRIN + RAO	Primary-only CVL	7.89×10^{-6}	1.45×10^{-4}	5.45×10^{-2}	4.81×10^{-3}	$6.67 imes 10^{-4}$	1.31×10^{-3}

[BB, Meerburg, Meyers and Battaglia 21]

Does it helps constraining cosmology? **PICO** forecasts

[BB, Meerburg, Meyers and Battaglia 21]

What next?

- include Raleigh scattering in latest CAMB version.
- Allow for eg. EDE forecasts, easier integration with
- Trying different component separation methods: parametric, SMICA on future SO and CCAT data.

- M1 Student Andrea Landais (now M2 NPAC) has worked (a lot) to

multifrequencies likelihoods, non-parametric recombination history.

Thank you !

PyRayTE (Soon)

- Yu et al 2001
- Alipour et al 2015
- Lewis 2016
- Beringue et al 2021
- Coulton et al 2021
- Zhu et al 2023
- Dibert et al 2023