

POLARIZATION MEASUREMENT AND CALIBRATION WITH KIDS FOR THE NEXT GENERATION OF CMB INSTRUMENTS

A. Catalano

Sofia Savorgnano

CMB France #6, IHP Paris - December 19, 2024

WHY DO WE NEED A PRECISE ABSOLUTE POLARIZATION ANGLE CALIBRATION?

demonstrate that LEKIDs are a competitive technology applicable to CMB instruments

APPLICATION

French KIDs-based SAT for SO (KAIROS project)

A. Catalano's talk

Savorgnano et al, in prep

A FULLY-EQUIPPED FACILITY TO SIMULATE REAL OBSERVING CONDITIONS

fully functional cryostat from the KISS instrument housing pair of LEKIDs arrays separated by a polarizer at 45°

coupled to the sky simulator's cryostat providing a cold background as the atmosphere

PHOTOMETRY : POINT-LIKE UN-POLARIZED SOURCE FOR FOCAL PLANE GEOMETRY

scan the point-like unpolarized source to obtain focal plane geometry (position and beam)

SPECTROSCOPY : INTERFEROGRAMS AND BANDWIDTH

LEKIDS FOR CMB POLARIZATION : IN-LAB PROOF OF CONCEPT

PolarKID R&D Project:

Can we use LEKIDs in a filled array configuration to measure polarization?

compare source's polarization with detected

Cryostat

the difference gives the systematic effects contribution

MEASUREMENT STRATEGY AND MODEL

PRELIMINARY RESULTS: COMPLEMENTARY MAPS ON THE TWO ARRAYS

response maps

PRELIMINARY RESULTS: FIT OF POLARIZATION ANGLE

Model function derived through Stokes and Mueller formalism:

 $S = 1 + sin 2\beta cos 2\alpha + cos 2\beta sin 2\alpha$

fitted parameter:

good control of in agreement with systematics requirements

9

FROM LEKIDS CHARACTERIZATION TO THEIR APPLICATION IN CALIBRATION SYSTEMS

OUR PLATFORM ACCESSIBLE FOR OTHER EXPERIMENTS : COSMOCAL PROOF OF CONCEPT AND SUBSEQUENT STEPS OF THE PROJECT

in-lab proof of concept

→ on a satellite in geo-stationary orbit → IRAM 30m

A. Ritacco's talk

11

COSMOCAL : IN-LAB PROOF OF CONCEPT - LPSC, FEBRUARY '24

Ritacco, Bizzarri, **Savorgnano** et al, PASP 136 115001

typical timeline for a sample pixel

amplitude spectrum showing chopper and HWP harmonics

2. FINDING THE OPTIMAL ALIGNEMENT

3. POLARIZATION MAPS : DETERMINE POLARIZATION ANGLE WITH < 0.1° UNCERTAINTY

GOAL : find correspondence between	
NIKA2 and COSMOCal detected	
polarization angles	40
STRATEGY : turning COSMOCal's	350
polarizer and acquiring fix track scans	e [deg] ³⁰⁰
RESULT : perfect correlation	NIKA2 angl
PERSPECTIVE : further analysis is	200
ongoing	150

- **Perspectives**: estimating beam distortions and measurements at 1 mm
- promising results and further analysis is ongoing

thank you !

sofia.savorgnano@lpsc.in2p3.fr

At LPSC, we dispose of a **fully-equipped facility** that simulates real observing

POLARKID results proved that LEKIDs used in a filled array configuration can assure precisions suitable for cosmological polarization experiments (KAIROS project)

The **COSMOCal proof of concept and first campaign** at IRAM 30m showed

BEAM DISTORTION ANALYSIS

0 1000 2000 3000 4000 5000 6000 intensity [Hz]

PRE-CALIBRATION OF THE SOURCE POLARIZER

DOUBLE COMPONENT MODEL : REFLECTION DOMINATES OVER TRANSMISSION

angle [deg]

FOCAL PLANE GEOMETRIES OF NIKA2 AND CONCERTO

Hu W. et al, 2024

POLARIZATION ANGLE DISTRIBUTION OVER A1&A3

5' X 5' MAPS CENTERED IN BEST-ALIGNEMENT POSITION

COSMOCAL MEASUREMENT STRATEGY : IN-LAB & @IRAM 30M

STEP 2: align the source's main beam to the cryostat/antenna Ø

STEP 3 : rotate the COSMOCal polarizer and capturing fixed track scans

- **STEP 4** : compare results between KIDs arrays, diffraction pattern and photogrammetry

