Simons Observatory : status on the deployment and analysis of Small Aperture Telescopes

Adrien La Posta Oxford University

adrien.laposta@physics.ox.ac.uk

on behalf of the Simons Observatory collaboration

Meeting CMB-France #6 2024 December 19th

Measuring large-scale polarization

>375 researchers from over15 countries & 60 institutions

SO 2024 Chicago F2F

GAP

SAT instrument & survey

credit: Nicholas Galitzki

SAT instrument & survey

Galitzki et al., Design, integration, and testing of the small aperture telescopes

+2MF (UK) + 1LF (JP) (~60.000 detectors)

SAT instrument & survey

Galitzki et al., Design, integration, and testing of the small aperture telescopes Ade et al., SO science goals and forecasts

		SATs $(f_{\rm sky} = 0.1)$	
Freq. [GHz]	FWHM (')	Noise (baseline)	Noise (goal)
		$[\mu \text{K-arcmin}]$	$[\mu \text{K-arcmin}]$
27	91	35	25
39	63	21	17
93	30	2.6	1.9
145	17	3.3	2.1
225	11	6.3	4.2
280	9	16	10

Deployment status

image credit: SO drone flight 2024

LAT mirrors are on their way ! (expected on site early January)

credit: Mark Devlin

image credit: SO drone flight 2024

Deployment status

SAT MF1 first light Oct. 2023 SAT MF2 first light Dec. 2023

under commissioning

SAT UHF mounted on platform first light planned for **Feb. 2024**

First SO:UK platform on site !

First observations of Jupiter/Moon

Day-Weiss et al. [to come soon]

First observations of Jupiter/Moon

Day-Weiss et al. [to come soon]

Mitigation of atmospheric noise

Yamada et al. [Rev. Sci. Instrum. 95, 024504 (2024)]

d

image credit: SO

$$_{
m mod}(t) = I(t) + \epsilon \left[Q(t) + i U(t)
ight] e^{-i4\omega_{
m HWP}t}$$

Mitigation of atmospheric noise

Yamada et al. [Rev. Sci. Instrum. 95, 024504 (2024)]

image credit: SO

$$d_{
m mod}(t) = I(t) + \epsilon \left[Q(t) + i U(t)
ight] e^{-i4\omega_{
m HWP}t}$$
 .

large-scale noise

Mitigation of atmospheric noise

Yamada et al. [Rev. Sci. Instrum. 95, 024504 (2024)]

$$d_{
m mod}(t) = I(t) + \epsilon \left[Q(t) + i U(t)
ight] e^{-i4\omega_{
m HWP}t}$$

image credit: SO

SAT-MF Galactic maps

Azzoni et al. (soon)

image credit: SO

QU CMB polarization maps

Azzoni et al. (soon)

Quantifying the effect of filters

Hervias et al. [to come soon]

Quantifying the effect of filters

Hervias et al. [to come soon]

Recovering unbiased power spectra

-170

-10

simulation

Component separation

Wolz et al. [A&A 686 A16 (2024)]

cross-C₁ cleaning parametric map-based (+moments) (+dust marg.)

Recover unbiased constraints on tensor-to-scalar ratio

See @Baptiste Jost talk for details about parametric map-based component separation

increasing foreground complexity

The future of Simons Observatory

SO SCIENCE GOALS

Table 9

Summary of SO key science goals ^a										
	Parameter	SO-Baseline ^b (no syst)	SO-Baseline ^c	SO-Goal ^d	Current ^e	Method	Sec.			
rimordial	r	0.0024	0.003	0.002	0.03	BB + ext delens	3.4			
erturbations	$e^{-2\tau} \mathcal{P}(k=0.2/\mathrm{Mpc})$	0.4%	0.5%	0.4%	3%	TT/TE/EE	4.2			
	flocal	1.8	3	1	5	$\kappa\kappa \times LSST-LSS + 3-pt$	5.3			
	51412	1	2	1		kSZ + LSST-LSS	7.5			
elativistic species	$N_{\rm eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$	4.1			
leutrino mass	Σm_{ν}	0.033	0.04	0.03	0.1	$\kappa\kappa + DESI-BAO$	5.2			
		0.035	0.04	0.03		$tSZ-N \times LSST-WL$	7.1			
		0.036	0.05	0.04		tSZ-Y + DESI-BAO	7.2			
Deviations from Λ	$\sigma_8(z = 1 - 2)$	1.2%	2%	1%	7%	$\kappa\kappa + LSST-LSS$	5.3			
		1.2%	2%	1%		$tSZ-N \times LSST-WL$	7.1			
	H_0 (ACDM)	0.3	0.4	0.3	0.5	$TT/TE/EE + \kappa\kappa$	4.3			
alaxy evolution	Weedback	2%	3%	2%	50-100%	kSZ + tSZ + DESI	7.3			
	$p_{\rm nt}$	6%	8%	5%	50-100%	kSZ + tSZ + DESI	7.3			
leionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6			

^a All of our SO forecasts assume that SO is combined with *Flanck* data

⁶ This of the protest sessing and both scotting with *Plank* and a point of the protest sessing 2 s.f.) and applies no additional systematic error.
⁶ This is the nominal forecast, increases the column (a) uncertainties by 25% as a proxy for instrument systematics, and

runs is the nominal rotecast, increases the countril (a) uncertainties by 2070 as a proxy for instrument systematics, a rounds up to 1 s.f.

^d This is the goal forecast, has negligible additional systematic uncertainties, and rounds to 1 s.f. ^e Primarily from BICEP2/Keck and Planck Collaborations 2015 and Planck Collaboration 2018d.

Trimarny from Droza 2/reck and Franck Conaborations 2019 and Flanck Conaboration 20

Agencia Nacional de Investigación v Desarrollo

Ministerio de Ciencia, Tecnologia, Conocimiento e Innovación

Gobierno de Chile

Ministerio de Bienes Nacionales

Column de Chill

The future of Simons Observatory

The future of Simons Observatory

