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Inflation would have

generated primordial

gravitational waves,
imprinting
in the

Science goal of current
(Simons Observatory,
Adrien’s and Baptiste’s
talks!) and future
(LiteBIRD, CMB-S4) CMB
experiments



https://indico.in2p3.fr/event/34251/contributions/146862/
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Component separation:

Isolate CME signal from foregrounds (Galactic dust, Galactic synchrotron in

polarization) using their respective spectral energy distributions (SED)
-+ CMB is a blackbody spectrum

=» Dust SED as modified blackbody and synchrotron SED as power law?
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Difficulty of generalizing
expected foreground SEDs
modeling in the presence of
instrumental systematics

= Possibly complex Galactic
foregrounds

Address assumptions on foregrounds’ SEDs and spatial variability?

-+ Minimally informed approach developed in Leloup et al. 2023
S Maadv MORSHED - CMB-France#6 — 2024. December19th @@ 4
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Basic assumptions of the method by Leloup et al. 2023

Goal: Retrieve CMB signal with minimal assumptions on foregrounds
Mixing matrix

1 B R noise
Observed CMB signal
data foreground components
Formalism: (dust and synchrotron)

® Foreground components with SED not assumed!
® CMB is a blackbody, fluctuations described by Gaussian prior
® Redefined mixing matrix (with reduced number of unknown parameters):

= Fit for amplitudes for each foreground component and each frequency
® Ad-hoc correction term added to the likelihood for regularization purposes

Main feature: perform foreground cleaning while making assumptions on CMB
S Maadv MORSHED - CMB-France#6 - 2024. December19th @@ B
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Novel component separation method from Leloup et al. 2023

New Maximum Likelihood method to estimate some elements of the mixing matrix
to clean foregrounds while minimizing number of assumptions

What is retrieved: Cosmological parameter(s) and mixing matrix elements

What is shown against the equivalent | Tinpu™ 0
. . = lors:
parametric component separation 2 Colors .
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Main results in harmonic domain from Leloup et al. 2023

What is shown against the equivalent parametric component separation method:
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Main results in harmonic domain from Leloup et al. 2023

What is shown against the equivalent parametric component separation method:
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r

Both methods fail when foreground SED spatial variability involved
=+ Calls for a pixel domain implementation
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Challenges:
® Adaptation of the likelihood of Leloup et al. 2023 to pixel domain

Pixel domain implementation

spec

S (B,C) = d"Pd + sM' (N, + C) 'sMl 4 In|C + Ne| —In|C + N,

l from harmonic to pixel domain

corr
prof
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Pixel domain implementation

Challenges:

® Adaptation of the likelihood of Leloup et al. 2023 to pixel domain

spec

S (B,C) = d"Pd + sM' (N, + C) 'sMl 4 In|C + Ne| —In|C + N,

l from harmonic to pixel domain

prof

pixel domain likelihood
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Pixel domain implementation
Challenges:

® Adaptation of the likelihood of Leloup et al. 2023 to pixel domain
SO (B,C) = d"Pd + sM (N, +C) 'sM + In|C+ N| - In|C+ N,

l from harmonic to pixel domain

O (5¢,B,C,m) = dTPd + sMLT (Ne + C) ' sML 4 (so — sWF) " (Ng! 4+ C 1) (s0 — sVVF)

pixel domain likelihood + In|C| + n (01/2 (C 1+N 1)01/2) 7.

harmonic domain covariances

® Account for foreground SED spatial variability

-+ Use of multipatch approach: mixing matrix
with pixel dependence (divided in patches
instead of the full sky)

=+ Makes the likelihood more complex



Minimally Informed CMB MAp foreground Cleaning: MICMAC
New formalism described in MM et al. (2024) [arXiv:2405.18365]

New package in pixel domain: github.com/CMBSciPol/MICMAC

Credits: Ema
Tsang King Sang
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Minimally Informed CMB MAp foreground Cleaning: MICMAC
New formalism described in MM et al. (2024) [arXiv:2405.18365]

New package in pixel domain: github.com/CMBSciPol/MICMAC

_ _ Credits: Ema
Use of the package (documentation available here): Tsang King Sang

® No major assumptions on the foregrounds, few “tuning” parameters

® Start from frequency maps to estimate:

© CMB power spectrum /cosmological parameters C

o Redefined mixing matrix elements (pixel) Bf

® Possibility to have a different patch distribution for each mixing matrix element



https://github.com/CMBSciPol/MICMAC
http://minimally-informed-cmb-map-constructor-micmac.readthedocs.io/

Minimally Informed CMB MAp foreground Cleaning: MICMAC
Gibbs Sampling divided in four steps:

Gibbs chain Estimates
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Minimally Informed CMB MAp foreground Cleaning: MICMAC
Gibbs Sampling divided in four steps:

Gibbs chain Estimates

Latent
parameter

Classical
Gibbs steps

Mixing
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elements
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Minimally Informed CMB MAp foreground Cleaning: MICMAC

Gibbs chain :
Gaussian

Latent H P(l..) o nt €7 (E + N IET
parameter ' Gaussian (Wiener-filter)
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Minimally Informed CMB MAp foreground Cleaning: MICMAC

Gaussian
—1/2 1 1/2

P(n]....) x nt C (C +N.HIC g

Gaussian (Wiener-filter)
P(Sc|) X (Sc — SC,WF)t (C_l -+ Nc_l) (Sc — Sc,WF)

Inverse Wishart (or r through MwG)
P(CJ....) x s!C s + In|C]

Metropolis-within-Gibbs
P(Bg|....) x —(d — Bese)! N 1Bg(BIN1B;) " 'BEN"1(d — Bes,)

-1/2 ,~—1 1/2

+n°C (€ +NH)TICT
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Minimally Informed CMB MAp foreground Cleaning: MICMAC

harmonic =« pixel .
’ Gaussian

P(n]....) < n* 6_1/2 (é_l —I—Nc_l)_l("J_I/2 n

(harmonic +
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Careful multipatch
memory handling
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Minimally Informed CMB MAp foreground Cleaning: MICMAC

harmonic « pixel

Gaussian

P...)x ot ¢ V2@

+Nc_1)_1é_1/2 n

(harmonic +
pixel)1 with
Conjugate
Gradient method

ussian (Wiener-filter)

Sc|--.) X (8¢ — S wF)" (C_l + N ') (sc — scwr)

e Wishart (or r through MwG)
..) < 8'C7lse +In|C|

Careful multipatch

memory handling

lis-within-Gibbs
P(Bgl....) x —(d — Bese)!N"IBg(BEN"'B¢) 'BEN~(d — Bs,)

» Numerically expensive +nt & Nc_l)‘flé .
code (choice of JAX)




Minimally Informed CMB MAp foreground Cleaning: MICMAC

Residual validation of MICMAC against customized model d7s1 with foregrounds spatial
variability downgraded to 12 patches
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Maadv MORSHED — CMB-France#6 — 2024. December 19th 12



Minimally Informed CMB MAp foreground Cleaning: MICMAC

Residual validation of MICMAC against customized model d7s1 with foregrounds spatial

variability downgraded to 12 patches

LiteBIRD-like experiment

1073

10-° 4

lensing BB B R P

100 107
L
Total and foreground residuals of the analysis

Two configurations tested:

® “ns=1":12 patches
® “ns=0”:1patch

Total residuals include noisel!

k Histogram onr
|

Y

T T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
r

Posteriors on tensor-to-scalar ratio r

MM et al. (2024)




Minimally Informed CMB MAp foreground Cleaning: MICMAC

Residual validation of MICMAC against customized model d7s1 with foregrounds spatial

variability downgraded to 12 patches

LiteBIRD-like experiment

1073

10-° 4

10!
!

Total and foreground residuals of the analysis

Two configurations tested:

“ns=1": 12 patches
“ns=0": 1 patch

Total residuals include noisel!

k Histogram onr
|

T

0 T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

r

Posteriors on tensor-to-scalar ratio r

MM et al. (2024)




Minimally Informed CMB MAp foreground Cleaning: MICMAC

Residual validation of MICMAC against customized model d7s1 with foregrounds spatial

variability downgraded to 12 patches

LiteBIRD-like experiment

1073

10-° 4

10!
!

Total and foreground residuals of the analysis

Two configurations tested:

“ns=1": 12 patches
“ns=0": 1 patch

Total residuals include noisel!

k Histogram onr

0 T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

r

Posteriors on tensor-to-scalar ratio r

MM et al. (2024)




Minimally Informed CMB MAp foreground Cleaning: MICMAC

Residual validation of MICMAC against customized model d7s1 with foregrounds spatial

variability downgraded to 12 patches

LiteBIRD-like experiment

1073

10-° 4
] ] ] ] ] ] ]

:Fo_regro_un_d I_Re§id_uals ns=1,

10!

/]

Total and foreground residuals of the analysis

Two configurations tested:

“ns=1": 12 patches
“ns=0": 1 patch

Total residuals include noisel!

k Histogram onr

0 T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

r

Posteriors on tensor-to-scalar ratio r

MM et al. (2024)




Minimally Informed CMB MAp foreground Cleaning: MICMAC

Residual validation of MICMAC against customized model d7s1 with foregrounds spatial

variability downgraded to 12 patches

LiteBIRD-like experiment

1073

106 ‘ R
lensing BB

:Fo_regro_un_d I_Re§id_uals ns=1,

100 l
Total and foreground residuals of the an

alysis

Two configurations tested:

“ns=1": 12 patches
“ns=0": 1 patch

Total residuals include noisel!

Histogram onr

0 T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

r

Posteriors on tensor-to-scalar ratio r

MM et al. (2024)




Minimally Informed CMB MAp foreground Cleaning: MICMAC

Residual validation of MICMAC against customized model d7s1 with foregrounds spatial

variability downgraded to 12 patches

LiteBIRD-like experiment

1073

106 ‘ R
lensing BB

:Fo_regro_un_d I_Re§id_uals ns=1,

100 l
Total and foreground residuals of the an

alysis

Two configurations tested:

“ns=1": 12 patches
“ns=0": 1 patch

Total residuals include noisel!

Histogram onr

[
[
[
[
L

T

0 T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

r

Posteriors on tensor-to-scalar ratio r

MM et al. (2024)




I:J:J |E [T_—‘J G _J j-l @ _T‘J Consistency tests for Simons

Observatory

Schematics of Pipeline C (parametric)

Estimation of spectral emission laws

spectral parameters

Yy

Estimation of the component separated sky maps

A

- Computation of angular power spectra of each sky
component, as well as the noise covariance

A

Sampling of the cosmological likelihood to estimate
r, Aiens (With an optional marginalization over Agyst)

Credits: Wolz et al. (2024),
arXiv:2302.04276
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Schematics of Pipeline C (parametric)
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Sampling of the cosmological likelihood to estimate
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Credits: Wolz et al. (2024),
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Schematics of Pipeline C (parametric)

—

‘ Estimation of spectral emission laws
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Estimation of the component separated sky maps\

- Computation of angular power spectra of each sky
component, as well as the noise covariance

|

Sampling of the cosmological likelihood to estimate
r, Aiens (With an optional marginalization over Ad.,sJ\

Credits: Wolz et al. (2024),
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New forecasting tool — Leloup, MM et al. (in prep)

To assess the impact of a given
parameterization choice on:

® Biasonr

® Uncertainty onr
Forecasting tool based on the Hessian
of the likelihood (a la Xforecast,
Stompor et al. 2016), currently
implemented in harmonic domain and
focused on the fixed CMB estimate

= Preliminary results favor good
margin in the choice of the fixed CMB
estimate

=+ Prospects for the future: assess
systematic mitigation impact
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Conclusion
® Several challenges for component separation methods, to robustly retrieve CMB

signal with future generation experiments
® New pixel domain method (MICMAC) based on Leloup et al. 2023:
o No assumption on foregrounds SED modeling (except for the multi-patch)
O Relies on Gibbs sampling
O Current implementation able to handle:
B Spatial variability of the foregrounds, inhomogeneous noise
© Formalism explained and validated in MM et al. 2024
® Ongoing project(s):
o Forecasting tool in Leloup et al. [in prep]

o Performances of MICMAC with complex foregrounds (lead by A. Rizzieri)

=T 0E
O Inclusion of beams and filtering for AT D (Baptiste’s talk!)
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