The SZ large program of NIKA2: Scaling relation and application to cosmology

Alice Moyer-Anin LPSC Grenoble

On behalf of the NIKA2 collaboration

- 1. SZ cluster cosmology
- 2. The SZ large Program of NIKA2
- 3. The SZ-Mass scaling relation
 - \succ Calibration method
 - \succ Application to cosmology

The Sunyaev-Zeldovich (SZ) effect

Inverse Compton scattering of CMB photons on cluster ionized gas

ightarrow Energy transfer from electrons to photons

→ Distortion of CMB spectrum to high frequencies → Effect amplitude caracterised by the Compton parameter Intra-cluster electron pressure: $P_e(r)$ Compton parameter: $y = \frac{\sigma_T}{m_e c^2} \int P_e(r) dl$

Negative signal

Less intensity than expected from CMB

217 GHz

SZ output : Radial pressure profile $P_e(r)$

SZ Observable : $Y_{500} \propto \int y \, dS$ integrated up to R_{500}

 $R_{500}\,$: radius of a sphere of density 500 times ρ_c

Positive Signal

More intensity than expected from CMB

Cosmology with the Sunyaev Zeldovich (SZ) effect

SZ Large Program (LPSZ) of NIKA2

NIKA2 high-resolution camera (KIDs)

- Installed at the IRAM 30-m telescope in Granada
- Operating since 2017

ν observation	150 GHz	260 GHz	
Resolution	17.6'' ±0.1''	11.1'' ± 0.2''	Resolved substructures of clusters
Field of view	6.5'	6.5'	Full maps of the clusters
What we observe	negative SZ signal	point sources	

L. Perotto et al., A&A 2020

SZ Large Program (observations finished in 2023)

- Dedicated to cluster cosmology
- 38 observed clusters (ACT and Planck follow-up)
- observed both in SZ (NIKA2) and X-ray (XMM Newton)

 - Pressure profile Density profile

$$M(r) \propto \frac{1}{n_e(r)} \times \frac{dP_e(r)}{dr}$$

hydrostatic mass

Precise estimation of

integrated quantity Y_{500} and M_{500}

to calibrate scaling relation

- Intermediate to high redshift range: $z \in [0.5, 0.9]$
- Direct measurement of $Y_{\rm 500}$ with SZ observations
- Consistent angular resolution across X-ray and SZ observations
- Hydrostatic mass estimated with SZ and X-ray data
- Box selection
 - ightarrow insensitive to the underlying mass distribution
 - \rightarrow Suffisant range in Y_{500} and M_{500}

\rightarrow First version of the maps

LPSZ Clusters

Clusters observed with NIKA2 at 150 GHz

preliminary

Various morphologies can be observed Rel Integrated quantities for all clusters: Y₅₀₀, M₅₀₀

Disturbed

SZ-Mass scaling relation

Use LPSZ data to calibrate the SZ-Mass scaling relation \rightarrow To be applied to large scale SZ survey

In fact $P(\log(Y_{500}) | \log(M_{500})) = \mathcal{N}(\alpha + \beta \log(M_{500}), \sigma_{int}^2)$

three parameters α the intercept β the slope σ_{int} the intrinsic scatter

We need a precise and accurate estimation of α , β and σ to obtain precise and accurate cosmological constraints

SZ-Mass scaling relation

Scaling relation estimation

Robust estimation

Error bars well defined

LPSZ selection function taken into account

Solution : LIRA+SBI

Tools

19/12/2024 CMB France

Alice Moyer-Anin

Method overview: Training

Pipeline developed to have unbiased result (selection function)

13

Sample simulations

Goal : simulate [Y_{500_i}, M_{500_i}] sample similar to LPSZ data

Ready to be used by SBI

SBI training validation: Overall diagnostic

Multidimensional diagnostic : TARP (Tests of Accuracy with Random Points) For a range of scaling relations

• necessary and sufficient condition for posterior accuracy

. . .

ightarrow To identify the best SBI hyperparameters training

batch size = Number of data seen before updating the neural network

Learning rate = pace to change the model each time

Well calibrated posterior

SBI training validation: 1D diagnostic

One dimension diagnostic: $bias_{std} = \frac{\alpha_{SBI} - \alpha_{True}}{std_{SBI}}$ For a range of scaling relations

If $bias_{std} \in [-2,2]$ means input values within 2 σ error bars of SBI outputs

 α , β and σ unbiased and with coherent error bars

Method validated for several scaling relations

Alice Moyer-Anin

Application to cosmology

Sample used: Planck 2015 sample Planck XXIV A&A (2015)

Analysed with Class-sz B. Bolliet et. al. EPJ Web Conf. (2024) collaboration with B.Bolliet

Planck scaling relation and error bars

 $\alpha = -0.19 \pm 0.02$ $\beta = 1.79 \pm 0.08$ $\sigma = 0.075 \pm 0.01$

Cosmological inference well underway

- ightarrow First tests done with Planck scaling relation
- → Planck scaling relation error bars: taken into account
- \rightarrow Tests done with different scaling relations

Red contours more accurate than blue contours

Error on scaling relation parameters must be propagated to cosmology

Alice Moyer-Anin

- Fully validated method to obtain the SZ-Mass scaling relation from the LPSZ sample
- Soon to be applied on LPSZ data
 - \rightarrow Accurate pdf of α , β and σ
- Cosmological inference ready
 - → Error bars on scaling relation must be propagated to cosmological parameters

- Fully validated method to obtain the SZ-Mass scaling relation from the LPSZ sample
- Soon to be applied on LPSZ data
 - \rightarrow Accurate pdf of α , β and σ
- Cosmological inference ready
 - → Error bars on scaling relation must be propagated to cosmological parameters

Universal pressure profile

21

Universal pressure profile

C. Hanser et al. In pre

Methodology

Fit of a gNFW model $\overrightarrow{\theta} = \{p_0, c_{500}, \alpha, \beta, \gamma\} = \{P_0/P_{500}, R_{500}/r_p, \alpha, \beta, \gamma\}$

- Basic approach: Take the median of the re-scaled profiles
- Novel approach: Combine the likelihood distributions $\mathscr{L}_k(d_k | \vec{\theta'})$ of the individual cluster fits $\{d_k\}$

Independent measures $\rightarrow \ln \mathscr{L} \propto \sum_{k} \ln \mathscr{L}_{k}$

- 1. Rescale the individual likelihood distributions
 - \rightarrow Accounts for the errors on R_{500} , P_{500} for each cluster
- 2. Account for the intrinsic scatter using a hierarchical Bayesian model

$$\mathscr{L}_{k}(d_{k} | \overrightarrow{\theta}_{\text{UPP}}) = \int d\overrightarrow{\theta}' \mathscr{L}_{k}(d_{k} | \overrightarrow{\theta}') \mathscr{N}(\overrightarrow{\theta}' | \overrightarrow{\theta}_{\text{UPP}}, \Sigma_{\text{int}})$$

Intrinsic scatter (= cluster-to-cluster dispersion)

Problematic: we don't know for any arbitrary set of parameters θ the exact value of $\mathscr{L}_k(d_k | \overrightarrow{\theta'})$

44 C. Hanser slide

19/12/2024 CMB France

Alice Moyer-Anin

22

Study of the UPP impact on the C_{ℓ}^{tSZ}

• Fixed Halo-Mass function (Tinker et al, 2008)

• Fit of 5 parameters for ΛCDM (τ^{reio} fixed) + hydrostatic-mass bias B + 3 nuisance parameters

$$F = \sigma_8 (\Omega_m/B)^{0.40} h^{-0.21}$$

	F
A10*	$0.481\substack{+0.005\\-0.004}$
$\mathrm{P13}^\dagger$	$\textbf{0.479} \pm \textbf{0.004}$
$\rm H24_{MGs}$	0.475 ± 0.004

Universal pressure profile parameterization is affecting cosmological parameters

New estimate of the F parameter using *Planck* y-map and the LPSZ universal pressure profile

55

C. Hanser slide

PRELIMINARY

SZ scaling relation

$$E_z^{-2/3} \left(\frac{D_A^2(z) Y_{500}}{10^{-4} \mathrm{Mpc}^2} \right) = 10^{\alpha} \left(\frac{M_{500}}{6 \times 10^{14} M_{\odot}} \right)^{\beta}$$

different SZ-Mass scaling relations:

	Planck 2013	Chandra-Planck (2024)	NIKA2-LPSZ
Data	XMM-Newton Planck	Chandra Planck	XMM-Newton NIKA2 + Planck
redshift	[0,0.45]	[0,0.35]	[0.5,0.9]
sample size	71	146	38
resolution	X : 6.6'' SZ : ~6 '	X : 0.2'' SZ : ~6'	X : 6.6'' SZ : 17.6''
mass estimation	X-only Mass	X-only Mass	SZ-X Mass

NIKA2-LPSZ

Aim: obtain a **scaling relation** a **mean pressure profile**

- At larger redshift
- With controlled systematics including cluster morphology

Planck 2013 results XX A&A G. Aymerich et al. A&A 2024