CMB-France - Institut Henri Poincaré

December 18, 2024

Setting requirements on out-of-band rejection for next generation CMB experiments

Louise Mousset, LPENS on behalf of the LiteBIRD collaboration

louise.mousset@phys.ens.fr

Objective

We observe the CMB among many astrophysical foregrounds.

How to define the instrument bandpass and the filtering scheme?

L. Mousset

Definitions and assumptions

We consider frequencies from 1 to 10^6 GHz split in several domains.

Definitions and assumptions

The goal is to constrain the **attenuation factors** A^L , A^C and A^H , assumed to be constant in each domain.

Methodology

Main scientific driver: $\delta r < 0.001$

Instrumental design

7

Methodology

Main scientific driver: $\delta r < 0.001$

Instrumental design

Sky modelling

We consider 5 components :

- CMB
- Thermal Galactic dust emission
- Synchrotron emission
- Interplanetary dust (IPD)
- O and B stars

The SED amplitudes are scaled on available measurements taking into account the beam of the instrument.

Spectral radiance [W/m²/sr/Hz] (example for a 1° beam)

Simple refractive design

Mechanical and optical elements:

- Two lenses L1 and L2
- One half-wave plate (HWP)
- A focal plane (FP) paved with detectors
- Baffle + Tube + Hood
- Hypothetical filters at positions s0 (on-chip), s1, s2, s3, s4

Cryogenic systems not modeled

Instrumental emission => Black body at the element temperature

Optical model

Each optical element is modeled in terms of emissivity, reflectivity and efficiency such as

$$E(\nu) + R(\nu) + \varepsilon(\nu) = 1$$

Performance code overview

Performance code: channel sensitivities and $\sigma(r)$

Performance code: thermal balance control

Radiative heat load on L1 from sky and instrument components :

Additional NEP and corresponding requirements

 $\delta r < 0.001$ and $\Delta \mathrm{NEP} \leq 0.14 \,\mathrm{aW}/\sqrt{\mathrm{Hz}}$

Summary

- I presented a general approach to set requirements on out-of-band rejection level for a CMB instrument.
- This method was applied to the LiteBIRD instrument design and the results will be published in a paper.
- This work was accompanied by the development of the performance code for the instrument, now available within the collaboration and still in development.

Thank you for your attention !

Backup slides

Noise budget allocation

Total detector NEP										
I٢	Internal NEP				External NEP = √(0.32) Internal NEP					
	fundamenta	Readout NEP		Vib	TF	CR	Mag	EMI		
	Photon NEP	Thermal carriers NEP	< v(0.22) fundamental NEP		NEP 1/v5	NEP 1/√5	NEP 1/√5	NEP 1/√5	NEP 1/v5	