Swiss National **Science Foundation**

LOUIS LEGRAND

CMB LENSING

CMB LENSING

IMPACT OF MASSIVE NEUTRINOS ON STRUCTURES

Agarwal & Feldman 2011, Abazajian et al. 2016

IMPACT OF MASSIVE NEUTRINOS ON STRUCTURES

Agarwal & Feldman 2011, Abazajian et al. 2016

CMB LENSING AND NEUTRINO MASS

Abazajian et al. 2016

NEXT GENERATION POLARISATION SURVEYS

Lensed B-modes, only produced by lensing

CMB polarization is thus a very good tracer of the lensing field

ITERATIVE ESTIMATORS

$$\ln P(\phi \mid X^{\text{dat}}) = -X^{\text{dat}^{\dagger}} \text{Cov}_{\phi}^{-1} X^{\text{dat}} - \frac{1}{2} \ln \det \text{Cov}_{\phi} - \frac{1}{2} \sum_{L} \frac{\phi_{L}^{2}}{C_{L}^{\phi\phi}}$$

In iterations to find the maximum of the posterior
$$\delta \ln P \qquad \text{OD to ME to prior} \qquad \hat{\gamma}$$

Newton

Gradient:

 $- = g^{\vee \nu} + g^{\mu n} + g^{\mu n \sigma}$ δф

iteratively

- -> Use couplings between scales created by lensing
- -> Find ϕ (~ 50 millions pixels) maximising the log-posterior

In practice we delens the CMB and estimate the residual lensing on the delensed maps,

(I)

ITERATIVE RECONSTRUCTION

12 degree square

CMB-S4 Next Generation CMB Experiment

FORECASTS

Ratio of the constraints on the lensing power spectrum amplitude

QUADRATIC ESTIMATOR POWER SPECTRUM

Disconnected (gaussian) contractions of the lensed CMB fields

The power spectrum of the estimated lensing potential is a 4 point functions of the maps

The signal we want

 $C_L^{\hat{\phi}\hat{\phi}} = C_L^{\phi\phi} + N_L^0 + N_L^1 + \dots$

Non gaussian secondary contractions created by lensing (proportional to $C^{\phi\phi}$)

ESTIMATING THE LENSING POWER SPECTRUM Quadratic estimator

XX

 $C_L^{\hat{\phi}\hat{\phi}} = C_L^{\phi\phi} + N_L$

Iterative estimator

XX, XXX, XXXX, .

POWER SPECTRUM BIASES

MASS OF NEUTRINOS

- Unbiased neutrino mass estimate
- Detection at 4σ of the neutrino mass
- LiteBIRD prior on the reionisation optical depth

Legrand and Carron 2022

 $\sum m_{\nu} = 60 \pm 16 \text{ meV}$

ANISOTROPIES

0.08

5

DEBIASING

Fractional bias of lensing spectrum

DEBIASING

Fractional bias of lensing spectrum

$$T^{\rm obs}(x) = T^{\rm len}(x) + n(x) \quad \longrightarrow \quad$$

$T^{\text{del}} \simeq T^{\text{unl}}(x) + n(x + \overrightarrow{\alpha}^{-1}(x))$

$$T^{\rm obs}(x) = T^{\rm len}(x) + n(x) \quad \longrightarrow \quad$$

Best lensing estimate $T^{del} \simeq T^{unl}(x) + n(x + \vec{\alpha}^{-1}(x))$

$$T^{\text{obs}}(x) = T^{\text{len}}(x) + n(x)$$

$$f$$

$$Gaussian and isotropic$$

Best lensing estimate $T^{\text{del}} \simeq T^{\text{unl}}(x) + n(x + \overrightarrow{\alpha}^{-1}(x))$

$$T^{\text{obs}}(x) = T^{\text{len}}(x) + n(x)$$

Gaussian and isotropic

$$T^{\text{obs}}(x) = T^{\text{len}}(x) + n(x)$$

Gaussian and isotropic

So called mean-field: anisotropic contribution which is not lensing

$$T^{\text{obs}}(x) = T^{\text{len}}(x) + n(x)$$

Gaussian and isotropic

- So called mean-field: anisotropic contribution which is not lensing
 - Can estimate it with simulations

$$T^{\text{obs}}(x) = T^{\text{len}}(x) + n(x)$$

Gaussian and isotropic

So called mean-field: anisotropic contribution which is not lensing

- Can estimate it with simulations
- Or with a theoretical prediction

$$T^{\text{obs}}(x) = T^{\text{len}}(x) + n(x)$$

Gaussian and isotropic

So called mean-field: anisotropic contribution which is not lensing

- Can estimate it with simulations
- Or with a theoretical prediction
- Since the iterative estimator is based on delensing, this mean field term need to be estimated and subtracted at each iteration

ESTIMATION OF THIS MEAN FIELD

Estimation of the delensed noise mean field $\kappa^{\rm MF}$

0.03

Mean field from simulations

Input lensing field Legrand and Carron in prep.

IMPACT ON THE LENSING SPECTRUM NORMALISATION

Estimated normalisation

$$\mathscr{W} = \frac{C_L(\phi^{\text{it}}, \phi^{\text{in}})}{C_L(\phi^{\text{in}}, \phi^{\text{in}})}$$

Can shift lensing field normalisation by 20 or 30 %

Legrand and Carron in prep.

QUALITY OF THE LENSING RECONSTRUCTION

 $/
ho_L^{\rm fid}$

 $ho_L^{\hat{\phi}^{\mathrm{it}},\,\phi^{\mathrm{in}}}$

Correlation coefficient:

$$\rho_L = \frac{C_L(\phi^{it}, \phi^{in})}{\sqrt{C_L(\phi^{it}, \phi^{it}) C_L(\phi^{in}, \phi^{in})}}$$

- No improvement
- It seems the mean field contribution is absorbed in the prior (proportional to κ)

GROUND BASED SURVEYS

- Ugly (highly anisotropic) noise patterns due to scanning strategy
- Atmospheric noise
- Any anisotropy can be confused with lensing by the quadratic estimator

Inverse-Variance

ACT WAS NOT PASSING NULL TESTS

Qu et al. 2023

CROSS ESTIMATOR

Separate the data in different splits -> different noise realization

Cross quadratic estimator

 $\hat{\phi}^{\text{QE}} = \bar{X}\nabla X^{\text{WF}}$

$\hat{\phi}_{\mathsf{X}}^{\mathsf{QE}} \equiv \frac{1}{2} \left(\bar{X}_1 \nabla X_2^{\mathsf{WF}} + \bar{X}_2 \nabla X_1^{\mathsf{WF}} \right)$

ACT NULL TESTS

 $\ln P(\phi \mid X^{\text{dat}}) = -X^{\text{dat}^{\dagger}} \operatorname{Cov}_{\phi}^{-1} X^{\text{dat}} - \frac{1}{2} \ln \det \operatorname{Cov}_{\phi} - \frac{1}{2} \sum_{L} \frac{\phi_{L}^{2}}{C_{L}^{\phi\phi}}$

$$X^{\text{dat}} \to \begin{pmatrix} X_1^{\text{dat}} \\ X_2^{\text{dat}} \end{pmatrix}$$

 $\ln P(\phi \mid X^{\text{dat}}) = -X^{\text{dat}^{\dagger}} \operatorname{Cov}_{\phi}^{-1} X^{\text{dat}} - \frac{1}{2} \ln \det \operatorname{Cov}_{\phi} - \frac{1}{2} \sum_{L} \frac{\phi_{L}^{2}}{C_{L}^{\phi\phi}}$

 $\ln P(\phi \mid X^{\text{dat}}) = -X^{\text{dat}^{\dagger}} \text{Cov}_{\phi}^{-1} X^{\text{dat}} - \frac{1}{2} \ln \det \text{Cov}_{\phi} - \frac{1}{2} \sum_{I} \frac{\phi_{L}^{2}}{C_{I}^{\phi \phi}}$

 $X^{\text{dat}} \to \begin{pmatrix} X_1^{\text{dat}} \\ X_2^{\text{dat}} \end{pmatrix} \qquad \text{Cov}_{\phi}^{-1} \to \text{C}_{\times}^{-1} = \begin{pmatrix} 0 & \text{Cov}_{\phi}^{-1} \\ \text{Cov}_{\phi}^{-1} & 0 \end{pmatrix}$

$$\ln P(\phi \mid X^{\text{dat}}) = -X^{\text{dat}^{\dagger}} \text{Cov}_{\phi}^{-1} X^{\text{dat}} - \frac{1}{2} \ln \det \text{Cov}_{\phi} - \frac{1}{2} \sum_{L} \frac{\phi_{L}^{2}}{C_{L}^{\phi\phi}}$$
$$X^{\text{dat}} \rightarrow \begin{pmatrix} X_{1}^{\text{dat}} \\ X_{2}^{\text{dat}} \end{pmatrix} \qquad \text{Cov}_{\phi}^{-1} \rightarrow \text{C}_{\times}^{-1} = \begin{pmatrix} 0 & \text{Cov}_{\phi}^{-1} \\ \text{Cov}_{\phi}^{-1} & 0 \end{pmatrix}$$

$$n P(\phi | X^{dat}) = -X^{dat^{\dagger}} \operatorname{Cov}_{\phi}^{-1} X^{dat} - \frac{1}{2} \ln \det \operatorname{Cov}_{\phi} - \frac{1}{2} \sum_{L} \frac{\phi_{L}^{2}}{C_{L}^{\phi\phi}}$$
$$X^{dat} \rightarrow \begin{pmatrix} X_{1}^{dat} \\ X_{2}^{dat} \end{pmatrix} \qquad \operatorname{Cov}_{\phi}^{-1} \rightarrow \operatorname{C_{\times}^{-1}} = \begin{pmatrix} 0 & \operatorname{Cov}_{\phi}^{-1} \\ \operatorname{Cov}_{\phi}^{-1} & 0 \end{pmatrix}$$

- likelihood but a kind of « loss function »
- We use the same iterative algorithm to maximise this loss function
- Are we going to converge ?

> This is not a covariance matrix anymore (not definite positive), so we are not defining a new

Legrand et al. in prep.

Legrand et al. in prep.

Reduces small scale biases

Legrand et al. in prep.

TEMPERATURE

POLARISATION

POLARISATION

CONCLUSION

- behaviour
- Optimal lensing power spectrum is robust to:
 - Mismodelling in the fiducial cosmology
 - Unknown sources of anisotropies
- The noise mean field does not bias the delensing iterations
- truncating the likelihood

Optimal estimators are now well developed and we have a better understanding of their

The iterative approach is robust enough that we can develop a cross estimator by savagely

