Radon-daughters Plate-out **Measurements at SNOLAB**

Silvia Scorza 2025 05 16

M.Stein, D.Bauer, R.Bunker, R.Calkins, J.Cooley, B.Loer, SS. Nucl.Instrum.Meth.A 880 (2018) 92-97

Rencontre Scientifique Interdisciplinaire sur le Radon - 2025

Outline

Objectives of the measurements

- To develop a ²¹⁰Pb plate-out model that can:
 - Predict alpha activity over time

 - Inform exposure limits for installation of experiment at SNOLAB - Be useful for other projects/experiments

and copper at SNOLAB

To achieve this through measured samples of high density polyethylene (HDPE)

SNOLAB Environment UG lab located at 6,800 ft level of operational Vale Creighton nickel mine (2,073 m overburden = 6,010 mwe)

- Average radon activity $\approx 135 \text{ Bq/m}^3$
- ²¹⁰Pb plate-out is a concern during installation

1/25

Radon Plate-out

Radon Plate-out

Radon Implantation

Experimental Setup

26 Oct 2016 - 18 Jan 2017 (83d)

samples in 4 locations underground

measurement of [ROI: 2-5.8MeV]

2 more HDPE control samples left

Total of 83 days of exposure

Exposed 8 HDPE and 2 Cu

at surface

- XIA LLC UltraLo-1800 ²¹⁰Po alphas (5.3 MeV)
- **Pre-exposure** assays performed 96 \pm 18 nBq/cm² for HDPE **394 ± 62** nBq/cm^2 for Cu
- **Control Samples**, Post-Exposure: 91 ± 22 nBq/cm² for HDPE

Analytical Model

Bateman Equation

- Expected alphas come from short-lived daughter (Po210) of a long-lived the Bateman equation
- Short half-life of Bi210 we can neglect it in the equation

$$N_{Po}(t) = N_{Pb}(0) \frac{\lambda_{Pb}}{\lambda_{Po} - \lambda}$$

a constant rate R_{Pb} $^{210}P_oActivity = A(t, R_{Pb}) = \lambda_{Po}$

parent (Pb210), a model for the number of Po210 atoms over time is built from

 $\lambda_i = \frac{Ln(2)}{t_{1/2,i}}$ $\frac{1}{\lambda_{Pb}} \left(e^{-\lambda_{Pb}t} - e^{-\lambda_{Po}t} \right)$ $N_{Po}(0) = 0$

 Radon-daughter plate-out rate ~constant with time -> Pb210 atoms added at $t_{exp}/binSize$

$$\sum_{i=1}^{n}$$

$$B(t, R_{Pb} \cdot binSize, i \cdot binSize)$$

Analytical Model Po 210 Activity

GRENOBLE | MODANE

Number of 210Po atoms at t

Number of 210Pb atoms plated out per unit time

Analytical Model Dust Activity

²¹⁰Pb \rightarrow ²¹⁰Po (t_{1/2}138d) U and Th o ²¹⁰Po activity **increases** with time, after exposure **constant** in $TotalActivity = (^{210}PoActivity) + (DustActivity)$

 $A_{dust}(t, t_{exp}) = (S_{dust}t)\Theta(t_{exp} - t) + (t_{exp}S_{dust})\Theta(t - t_{exp})$

Rate of activity accumulated per unit time from dust (i.e. Bq/d/cm²)

) U and Th chains activity, constant in time vity) + (DustActivity) + $(t_{exp}S_{dust})\Theta(t - t_{exp})$

Analytical Model Total Activity

Total Activity = $R_{Pb}K_{Pb} + S_{dust}K_{dust}$ 150

- Two measurements of activity:
 - two unknown variables
 - ingrowth of ²¹⁰Po

Analytical Model Total Activity

Analytical Model Total Activity

 $Total \ Activity = R_{Pb}K_{Pb} + S_{dust}K_{dust}$

Plate-out rate: ~278(423) ²¹⁰Pb atoms/day/cm² for HDPE(Cu)

Dust activity increases ~27(5) nBq/day/cm² for HDPE(Cu)

Compatible with SNOLAB TR:

- Dust fallout of 1-7 ng/cm2/hour(SNO-STR-95-050)
- Activity of ~150 Bq/kg (238U + 232Th chains) (SNOLAB-STR-2007-003)

Yields expected value of (3.6–28.8) nBq/day/cm²

Conclusions

Developed activity prediction model that accounts for ²¹⁰Pb and dust:

$$TotalActivity = \lambda_{Po} \sum_{i=1}^{t_{exp}/binS}$$
$$(S_{dust}t)\Theta(t_{exp} - t_{exp}) = 0$$

- Determined:
 - Plate-out rate: ~278(423) ²¹⁰Pb atoms per day per cm₂ for HDPE(Cu)
 - Dust activity increases ~27(5) nBq per day per cm₂ for HDPE(Cu)
- Constraint for installation of shielding for a targeted 10 μ Bq/cm²
 - ~39 days to limit the ²¹⁰Pb
 - ~60 days to limit dust activity

Size $B(t, R_{Pb} \cdot binSize, i \cdot binSize) +$ $(S_{dust}t)\Theta(t_{exp}-t) + (t_{exp}S_{dust})\Theta(t-t_{exp}))$

XIA at LPSC-LSM

Alpha spectrometer for large surface screening: specialized ionization counter comprising an active volume filled with boiled-off argon, a lower of positively charged electrodes

grounded electrode that is a conductive tray (holds sample), and an upper pair

Empty tray monitoring (*in-fieri*)

Detector characterization via electroformed Cu tray (courtesy of SNOLAB) (*in-fieri*)

First sample: Rn implanted copper lids of Ge semiconductor detectors to study the background discrimination power.

Commissioning of gas recycling system (developed by CPPM -Marseille)

Relocation underground at LSM (summer/fall 2025)

Thank you

