

Matthew Nguyen Journées LCG-France December 5th 2024

2024 was a record breaking year for the LHC!

eveled at pile-up of 62-64 with 3-5% dead-time

Data taking

[Generated at: 2024-11-25 09:23:29]

Physics results

https://cms.cern/news/cms-delivers-best-precision-measurement-w-boson-mass-lhc

Many other new results, e.g., top entanglement, parking / scouting, Run 3 x-sections, UPC, etc. https://cms.cern/physics

Highlight of the year was the W mass measurement, many years in the making NB: Analysis based only on 2016 data required 4B MC events, mostly at NNLO

Matthew Nguyen (LLR)

Triggering and datasets

In addition to standard prompt reconstruction data stored form for delayed reco (= parking) as well as HLT-only reco (= scouting)

L1: 110 kHz

Parking: 5 kHz Prompt: 2.5 kHz Scouting: > 25 kHZ

NB: Scouting event size is 12kB vs 1MB for standard events

Heavy-ion data taking

33B events collected

- 15B hadronic interactions
- 18B EM interactions (UPC)
- Nearly 10PB of RAW data

Prompt reconstruction of data ongoing at T0 and T1 cloud, should finish over the holidays

New data transfer system with SSD transfers to EOS \rightarrow collecting data at 32 GB/sec (20 GB/sec in 2023) Recorded <u>all</u> hadronic interactions w/min. bias trigger

Prompt reconstruction @ Tier-1

Contributions to prompt reco

Matthew Nguyen (LLR)

CCIN2P3 ~100% on prompt reco

CCIN2P3 utilization in November

Matthew Nguyen (LLR)

Tier-1 CCIN2P3

As usual, CCIN2P3 is one of the most reliable sites

Tier-1 resources in CMS

the sum of Tier-1s excluding JINR

- Target 15% of CMS Tier-1s total capacity
- Build Tier-1 in 2 stages
- Stage 1 initial configuration, Q3/2025 •
 - 170 kHS06 = <u>12 kCores</u> = 24 kThreads
 - <u>20 PB</u> disc storage
 - <u>60 PB</u> tape storage •
- Stage 2 reach adiabatically '26/ '27/ '28/ '29
 - look for new solutions to spare space in the mini module capacity 15 racks + tape library)
 - 350 kHS06 = 25 kCores = 50 kThreads
 - 40 PB disc storage
 - **120 PB** tape storage •

280CT24

CMS CRB, Serbian T1 Status and HLD, V. Rekovic

Matthew Nguyen (LLR)

Tier-1 in Serbia

6 racks 2 racks tape library

10 racks 4 racks tape library expanded

High Performance Computing Sites

Usage of HPCs continues to grow, with contributions from many sites

CMS Public

Matthew Nguyen (LLR)

Number of Running CPU Cores on HPCs - Monthly Average

Date

with large month-to-month variations

CMS Status

10

HPC sites by region

HPC usage driven by US sites, mainly at NERSC

Matthew Nguyen (LLR)

Allocation (core hours)	Allocation Period	%Used*
337M CPU	Jan 2024 - Jan 2025	74%
36M	Jun 2024 - May 2025	38%
23M	Oct 2024 - Sep 2025	2%
23M	Oct 2024 - Sep 2025	8%
23M	Oct 2024 - Sep 2025	15%
1M	Oct 2024 - Sep 2025	0%

Currently Active Allocations

But also HPC initiatives in Europe

Switzerland: All pledged T2_CH_CSCS CPU is provided via the Piz Daint HPC, completely transparent integration via ARC-CEs

Germany:

Site extension of T1_DE_KIT (HoreKA) Site extension of T2_DE_RWTH (CLAIX) **Transparent integration**

Spain:

BSC integrated as T3_ES_PIC_BSC

Italy:

CINECA Leonardo GP completely transparent integration in the batch system at T1_IT_CNAF CINECA Leonardo GP/Booster as opportunistic resources. CNAF-CINECA subsite

France is notably absent

CMS Status

11

Testing ARM resources

- In 2023 we got access for a short period to resources at **T3_UK_ScotGrid_GLA** (thanks to ATLAS colleagues)
- We performed high statistics production for Run3 pp and heavy-ion MC and 2023 Data. Not straightforward to setup but successful (in terms of production). But two different outcomes:
 - 1. MC: with ~7.10^6 (for 40 processes) reconstructed events (produced ×10², gen filter efficiency). Green light!
 - 2. DATA: \sim 4 · 10^6 events from 2023 RAW data.

 - C. Being the resources available for a limited span of time makes recovery tricky

Matthew Nguyen (LLR)

CMSSW supports ARM since 2016 (and POWER since 2014).regularly (daily) tested but lacking full-fledged physics validation.

A. Physics groups are (rightfully) more "demanding" on data since whole chain should be run on exactly the same events B. Less workflows w/ more events, O(100k)==much longer runs \oplus Data @ CERN (so need staging) \rightarrow More prone to failures

ARM - 2024 update

- In 2024 we got access to much more resources and in a stable way from KIT (the vast majority), CERN and CNAF.
- We carefully repeated the Data validation with 2022 and 2023 data.
- Validation is nearly done and no problem spotted \rightarrow CMS should be able to add ARM resources to its pool.
- A production-like test MC production is also coming in the next weeks.
- Lesson learned: for this kind of integrations we need enough resources available steadily.

45328
4.40671
2.64177

Run 3 schedule

New schedule approved by Council

- Run 3 extended thru June 2026
- Full production year in 2025, similar to 2024
- Very short YETS
- Expect another ~ 180 /fb in 25/26 \rightarrow we are midway thru Run 3

2033 FMAMJJASONDJFMAMJJASON

"Scenario B"

https://indico.cern.ch/event/1462121/

We

Wk 1 2 3 4 5 6 7

2025, DRAFT B

2026, DRAFT B

	Apr				May				June				
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	31	7	14	21 Easter	28	5	12	19	26	2	9 Whit Mon	16	23
Tu													
We													
Th					Labour				Ascension				
Fr			Good Friday										
Sa													
Su			Easter										

	July				Aug					Sep			
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Mo	30	7	14	21	28	4	11	18	25	1	8	15	22
Tu	J												
We	, p	va	VI										
Th	1										J.Genevois		
Fr	N												
Sa	0												
Su													

17 18 19 20

VdN

Physics	Special Run	HI	lon Setup	TS	Recom.	Interleaved Recom.	Scrubbing	MD

24	25	26
8 🔊	15	22
II		
I		
Ions	nhv	sics

37	38	39
7	14	21
J.Genevois		

50	51	52
7	14	21
		Xmas
		Xmas

Phase-2 CPU Projections

Matthew Nguyen (LLR)

Breakdown of CPU usage in CMS

GPU reconstruction

HLT reconstruction is different from offline reconstruction, which is dominated by "high-level" reco, e.g., full tracking

Matthew Nguyen (LLR)

GPU development for Run 3 driven by HLT

- 35% improvement in trigger latency
- Mostly implemented in "local" reconstruction
 - Pixel local reco, tracking & vertex reco
 - ECAL & HCAL local reco & clustering
- Initially in CUDA, now migrated to Alpaka

<u>Alpaka</u> *performance portability* library allows a single source to be built for and run on:

- x86 and ARM CPUs 0
- NVIDIA and AMD GPUs 0
- experimental support for Intel GPUs (and FPGAs) Ο
 - not yet enabled in CMSSW \rightarrow

Reconstruction on GPUs: Calorimeters

For Phase-2 endcap will be replaced with High Granularity Calorimeter \rightarrow 6M channels!

CLUE <u>https://inspirehep.net/literature/1777434</u> TICL: <u>https://cds.cern.ch/record/2839740</u>

Algorithms are under continuous development Currently consuming only 5% of reco time \rightarrow HGCAL reco will not be dominant

A new clustering framework (TICL) was designed to run on GPUs

b)		
	20	00

Reconstruction on GPUs: Tracking

Track finding & propagation thru the outer layers is the most time consuming part of reconstruction Current "Combinatorial Kalman Filter" is by sequential by nature, not suitable for GPUs

Phase-2 outer tracker will have doublet layers

Figure 1: A qualitative representation of the expected Phase-2 CMS tracker geometry 3.

Can be used to seed tracking in outer layers, an approach that can be offloaded to GPUs

"Line Segment Tracking" gives comparable physics performance, and also extends capabilities for highly displaced tracks

LST: <u>https://arxiv.org/abs/2407.18231</u>

Figure 3: The tracking efficiency is shown for Base CKF (blue), LST with CKF on Legacy Triplet (red), LST with CKF on LST Quads (orange) and LST with CKF on LST Quads+Triplets (purple) as a function of the simulated track $p_{\rm T}$ (left) and $r_{\rm vertex}$ (right) 10.

Code is now being integrated into CMSSW Final computing performance still TBD

Many other ongoing R&D efforts, e.g., ML based reconstruction

CMS Status

19

CMS (full) simulation

Continuous optimizations \rightarrow 35% CPU reduction in 5 years

Thanks to various optimisations including FastSim techniques CMS FullSim runs 3.5 × faster than G4 default

Historical trends of Full Simulation CPU time performance of 14 TeV ttbar process for different Phase-2 geometry design updates (2026Dxx). The average CPU run time per event in relative units of the event simulation is shown for 500 events on single threaded jobs. Main improvements are connected with the Geant4 migration from 10.4 to 10.7 (CMSSW 11_3_X), to 11.1.1 (CMSSW 13_1_X) and to 11.1.2 (CMSSW 13_3_X), updates of the HGCAL and Muon geometry (CMSSW 12_3_X), the change of the computing platform operating system from CentOS 7 (SLC7) to AlmaLinux 8 (EL8) (CMSSW) 12_4_X) and the usage of LTO (Link time optimization) build method (CMSSW 13_0_X). Some slowdowns relate to addition of more detailed geometries. The last two points CMSSW 14_0_X and 14_1_X are used in 2024 data taking and MC production for Run-3. During the period of nearly 5 years between the versions 11 0 X and 14 1 X the CPU time has improved for the ttbar process by 35 %.

Matthew Nguyen (LLR)

HGCAL Simulation with ML

- Full simulation twice as slow as current calorimeter
- Testing CaloDiffusion model to generate showers in HGCAL Amram, Pedro, PRD108 (2023), 072014
- Preliminary results: Good agreement in several variables

Improving fast simulation

- analytical interaction models
- Apply ML to FastSim to improve agreement with FullSim
- Use same scale factors for both simulations giving 10x speed-up in simulation
- Prototype in place for Run 3 production

Simulation developments

CMS FastSim: simplified geometry, fast particle propagation, fast tracking,

CMS Status

21

FlashSim: end-to-end framework using Normalizing Flow

- Trained on Geant4 FullSim
- writes directly to nanoAOD
- 30 3000x faster than FastSim
- 300 30000x faster than FullSim

VBF H→µµ

Matthew Nguyen (LLR)

FlashSim

Promising development for Run 4

Event generation on GPUs

- Dominated by calculation of higher order matrix elements

Substantial speed-up both in "gridpack" (matrix element) and event generation

Matthew Nguyen (LLR)

 Event generation expected to use 10-20% of CPU resources without R&D MadGraph, most-widely used FW in CMS, developed Madgraph4GPU

> Testing Maggraph4GPU in CMS gen FW: https://cds.cern.ch/record/2914584?In=en

Phase-2 Disk projections

Matthew Nguyen (LLR)

CMS Status

24

nanoAOD Adoption

AOD: \approx 500 kb/ev \rightarrow miniAOD \approx 50 kb/ev \rightarrow nanoAOD \approx 1-2 kb/ev

Matthew Nguyen (LLR)

Distribution of used Tiers (2021), Total Entries: 75

Distribution of data tiers 2024 (total entries: 22)

Majority of analyses now using nanoAOD \rightarrow important milestone for Phase-2 preparation

Analysis facilities

Supported by CMS Common Analysis Tools group

In addition to CERN interactive logon services such as the LXPLUS service (Linux Public Logon User Service) and the SWAN (Service for Web based ANalysis) platform, other CMS institutions also provide access to computing resources by providing so-called Analysis Facilities to users with a CERN account that is associated with CMS. These are summarised here.

- Coffea Casa
- Purdue Analysis Facility
- INFN Analysis Facility

- This project is a prototype for a data analysis system, CMS compliant. The main targets are:
- 1. Reducing analysis "time to insight" (training time for newcomers included) with an interactive and user-friendly UI
- 2. Single and easily accessible hub to reduce the complexity and maintenance of multiple and slightly overlapping solutions
- 3. Increasing the system delivered throughput (evts/s)

A prototype for interactive analysis

Coffea-Casa Analysis Facility

Coffea-Casa is a prototype analysis facility, which provides services for "low latency columnar analysis", enabling rapid processing of data in a column-wise fashion. This provides an interactive experience and quick "initial results" while scaling to the full scale of datasets.

Offline software & computing CDR for HL-LHC

CMS PAPER CDR-24-XYZ

DRAFT CMS Paper

The content of this note is intended for CMS internal use and distribution only

October 24, 2024 Archive Hash: none Archive Date: none

CMS Offline Software and Computing for HL-LHC

Conceptual Design Report

The CMS Collaboration

Abstract

This Conceptual Design Report (CDR) for Phase-2 CMS Offline Software and Computing (O&C) outlines the plan to enable the physics program of the experiment during Phase-2. While certain elements of the current software and computing infrastructure are scalable and sustainable for the foreseeable future, other aspects are not and will need to be adapted for HL-LHC, especially in light of new architectures and ways of provisioning computing resources. New technologies and facilities open up the possibility of exploiting new functionalities, especially in the areas of physics analysis, heterogeneous architectures, storage design, etc. We will step through the various areas of O&C, outlining our plans to evolve the offline software, grid middleware, and computing infrastructure, estimating in each case the positive impacts of success, the risks of failure, and the costs involved in terms of effort. Collaboration will be required not only within CMS but also with external software development. communities, WLCC sites, and others. Finally, updated projections on the computing resource needs for Phase 2 will be given, taking into account the likely impact of the various R&D activities.

This box is only visible in draft mode. Please make sure the values below make sense. PDFAuthor: D. Elvira, F. Ferri, et al. PDFfitle: CMS Offline Software and Computing for HL-LHC CDR PDFSubject: CMS PDFKeywords: CMS, computing

Please also verify that the abstract does not use any user defined symbols

	Conten	ts	
136	Conte	ents	
137	1	Introd	uction
138		1.1	Upgrades of LHC and CMS
139		1.2	Physics overview
140		1.3	Offline software and computing upgrades
141	2	Execut	ive summary and overview
142	3	Manag	ement framework
143	4	Comp	uting model
144		4.1	Data formats and event sizes
145		4.2	Tier architecture of computing resources
146		4.3	Data storage strategy
147		4.4	Data processing strategy
148		4.5	Network requirements
149		4.6	Required number of simulated events
150		4.7	Summary of input parameters to the Computing Model
151	5	Core se	oftware
152		5.1	Evolution of build tools and continuous integration
153		5.2	Evolution of the data processing software framework
154		5.3	Heterogeneous microarchitectures
155		5.4	Core software-related risks
156		5.5	Summary of core software-related R&D activities
157	6	Event	generators
158		6.1	Time performance estimates
159		6.2	R&D to improve computing performance
160	7	Detect	or simulation
161		7.1	Evolution of the CMS geometry model
162		7.2	Electronic signal simulation and pileup event mixing
163		7.3	Time performance estimates for FullSim and FastSim
164		7.4	R&D to improve physics models and computing perform
165		7.5	Summary of detector simulation-related R&D activities
166	8	Data re	econstruction
167		8.1	R&D to improve computing performance
168		8.2	Calorimeter clustering and linking
169		8.3	Data format size reduction
170		8.4	Summary of reconstruction-related and data formats R&I
171	9	Workfl	ow management
172		9.1	The current workflow management and system integration
173		9.2	Evolution of workflow management for the HL-LHC era
174		9.3	Impact of ProcessingUnit evolution on workflow manage
175		9.4	Summary of workflow management-related R&D activitie
176	10	End-us	ser analysis
177		10.1	Requirements of the End-User Analysis Workflow for HL
178		10.2	Dataset composition and smart caching
			T

Matthew Nguyen (LLR)

	7		Content	is	7	
		136 Contents				
	9	137	1	Introduction	9	
	9	138		1.1 Upgrades of LHC and CMS	9	
	9	139		1.2 Physics overview	9	
	10	140		1.3 Offline software and computing upgrades	10	
	13	141	2	Executive summary and overview	13	
	15	142	3	Management framework	15	
	17	143	4	Computing model	17	
	17	144		4.1 Data formats and event sizes	17	
	18	145		4.2 Tier architecture of computing resources	18	
	20	146		4.3 Data storage strategy	20	
	21	147		4.4 Data processing strategy	21	
	22	148		4.5 Network requirements	22	
	23	149		4.6 Required number of simulated events	23	
odel	25	150		4.7 Summary of input parameters to the Computing Model	25	
	29	151	5	Core software	29	
<u> </u>	29	152		5.1 Evolution of build tools and continuous integration	29	
*	30	153		5.2 Evolution of the data processing software framework	30	
	32	154		5.3 Heterogeneous microarchitectures	32	
	33	155		5.4 Core software-related risks	33	
Z	34	156		5.5 Summary of core software-related R&D activities	34	
	37	157	6	Event generators	37	
	37	158		6.1 Time performance estimates	37	
	38	159		6.2 R&D to improve computing performance	38	
~	43	160	7	Detector simulation	43	
	43	161		7.1 Evolution of the CMS geometry model	43	
g	43	162		7.2 Electronic signal simulation and pileup event mixing	43	
0 n	44	163		7.3 Time performance estimates for FullSim and FastSim	44	
rformance	44	164		7.4 R&D to improve physics models and computing performance	44	
ties	48	165		7.5 Summary of detector simulation-related R&D activities	48	
	50	166	8	Data reconstruction	50	
	51	167		8.1 R&D to improve computing performance	51	
	54	168		8.2 Calorimeter clustering and linking	54	
	54	169		8.3 Data format size reduction	54	
s R&D activities	55	170		8.4 Summary of reconstruction-related and data formats R&D activities	55	
	57	171	9	Workflow management	57	
gration	57	172	-	9.1 The current workflow management and system integration	57	
Cera	58	173		9.2 Evolution of workflow management for the HL-LHC era	58	
anagement	62	174		9.3 Impact of ProcessingUnit evolution on workflow management	62	
ctivities	62	175		9.4 Summary of workflow management-related R&D activities	62	
	63	176	10	End-user analysis	63	
or HL-LHC	64	177		10.1 Requirements of the End-User Analysis Workflow for HL-LHC	64	
	66	178		10.2 Dataset composition and smart caching	66	

Planning for CMS-wide review this spring with submission to LHCC next year

Concluding remarks

- •Run 3 is now in full swing, surpassing Run 2
- •CMS is continuing to utilize computing resources intensively but efficiently

- Phase-2 preparations continue to ramp up
 - Baseline GPU strategy being extended to offline reconstruction
 - Offline & computing CDR with details on Phase-2 strategy coming this year

• This will be my last Journées LCG-France representing CMS. It's been great working with you all!

