Search for excited leptons in the H1 experiment at HERA

T. Nguyet TRINH Centre de Physique des Particules de Marseille

(Co-)Directors: C. Vallée, E. Sauvan

N. Trinh - CPPM

Search for excited leptons at HERA

Contents

- The HERA e-p collider: a history !
- Compositeness and Excited leptons in H1
 - Motivation: Phenomenology of excited leptons
 - New preliminary results:
 - > Search for excited neutrinos
 - > Search for excited electrons
- Conclusion & Perspective

The HERA collider: the game is over

- ▲ High energy run ended on March 2007
 - ☞ H1 at HERA I+II: ~ 0.5 fb⁻¹

The H1 detector at the ep storage ring HERA

Sub-scales of matter

energy collisions.

Excited leptons: Phenomenology If energy scale: $\Lambda \ge 1$ TeV

Leptons could be made of smaller constituents (ex: excited leptons)

Compositeness Model could explain it

- > Basics of the phenomenological model
 - Excited leptons (l*) are considered as spin=1/2 & isospin=1/2 particles
 - Generally assume $\begin{pmatrix} \nu_{\ell}^* \\ \ell^* \end{pmatrix} \begin{pmatrix} \nu_{\ell}^* \\ \ell^* \end{pmatrix}_{\mathrm{P}}$

• Excited leptons couple to gauge bosons (II*V) (Gauge Mediated Interaction) $\mathcal{L}_{\ell\ell^*V} = \frac{1}{2\Lambda} \bar{\ell}^* \sigma^{\mu\nu} \left[gf \frac{\tau}{2} \mathbf{W}_{\mu\nu} + g'f' \frac{Y}{2} B_{\mu\nu} \right] \ell_{\mathrm{L}}$

compositeness scale weight factors

* Another approach: couplings of excited leptons to quark and leptons via Contact Interactions

$$\mathcal{L} \alpha = \frac{4\pi}{\Lambda^2} (e^{-\pi} \gamma^{\mu} e) (\overline{q} \gamma_{\mu} q)$$

similar phenomena
 mainly differs from GM by a
 normalisation factor
 not considered in following results

Gauge group weights: f & f'

• Θ_{w} : Weinberg angle

 $egin{aligned} &C_{\gamma
u
u*} = rac{1}{4}(f-f') = 0|_{f=f'} \ &C_{\gamma ee*} = -rac{1}{4}(f+f') = 0|_{f=-f'} \end{aligned}$

Search for leptons de-excitations could give informations on compositeness coupling

Excited leptons at colliders

- Production of excited leptons (e*, ν*) via
 t-channel γ(Z) or W exchange
- \bullet Lepton de-excitation by emission of γ , Z^0/W^{\scriptscriptstyle\pm}
- v^* search: σ much more in e-p collision mode

v (e)

р

HERA

Main SM processes at HERA

• Neutral Current DIS: $ep \rightarrow e X$

• Charged Current DIS: $ep \rightarrow v X$

• Photoproduction: $\gamma p \rightarrow X$

• QED Compton: $ep \rightarrow e_{\gamma} X$

• Lepton pair production: $ep \rightarrow ell X$

• W production: $ep \rightarrow eW X$

Search for excited leptons at HERA

Taking data for analysis

• Data samples taken by the H1 experiment used in this search for excited leptons

<u>Note</u>: for v^* , $\sigma(e^-p) / \sigma(e^+p) \sim 100$

due to favourable valence u-quarks and helicity enhancement

🎙 Using full HERA I+II data set

Excited neutrinos search

• Almost all v^* decay topologies are investigated

Search for v^* : radiative decay

- > Radiative CC-DIS
 - Isolated electromagentic deposit
 - No track associated
 - P_{T}^{miss} > 15 GeV
 - Reduce main background (CC-DIS) :
 - > P_{τ}^{y} > 20 GeV > E-Pz > 45 GeV or P_{τ}^{y} > 40 GeV

Search for v^* : multi-jets decay

Results for v^*

• Total event yields in each decay channel:

Search for ν^* , HERA I+II (e^-p , 184 pb⁻¹, preliminary)

Selection	Data	SM	Efficiency \times BR
$\nu^* \rightarrow \nu \gamma$	9	15 ± 4	50~%
$\nu^* \rightarrow eW_{\rightarrow qq}$	198	189 ± 33	30 – 40 %
$\nu^* \rightarrow \nu Z_{\hookrightarrow qq}$	111	102 ± 24	40 %
$\nu^* \rightarrow e W_{\rightarrow \nu \mu}$	0	0.54 ± 0.04	3 – 4.5 %
$\nu^* {\rightarrow} e W_{{\hookrightarrow} \nu e}$	0	0.6 ± 0.3	4-6 %
$\nu^* \rightarrow \nu Z_{\rightarrow ee}$	0	0.12 ± 0.04	2~%

• Invariant mass distributions for 3 main channels:

Limit calculation

• Use the Modified frequentist approach (T. Junk)

[Nucl.Instrum.Method.A434, 435, 1999]

> Define **a test statistic** X:

For each ith channel: (s_i, b_i, d_i: expected signal, background, observed candidates)

$$X_{i} = \frac{e^{-(s_{i}+b_{i})}(s_{i}+b_{i})^{d_{i}}}{d_{i}!} / \frac{e^{-b_{i}}b_{i}^{d_{i}}}{d_{i}!} \quad \text{and} \quad X = \prod_{i=1}^{n} X_{i}$$

v Define **a confidence level** CL:

$$CL_{s+b} = P_{s+b} \left(X \le X_{obs} \right)$$

$$CL_{b} = P_{b} \left(X \le X_{obs} \right)$$

$$CL_{b} = P_{b} \left(X \le X_{obs} \right)$$

$$CL_{b} = CL_{b} \quad \text{(Modified Frequentist CL)}$$

▶ 95% CL upper limit (N_{lim}) on the signal such that: $CL_s \le 0.05$

Systematics taken into account

Preliminary Result: new domain limit

• 95% C.L. exclusion limits:

 \mathbf{F} For f = -f' and f/ Λ = 1/M₁: M₁ < 211 GeV are excluded

\$ the new H1 limits greatly extend the previous searched domains at HERA \$ better sensitivity at HERA for v^* with masses beyond the LEP reach

Excited electrons search

• Almost all e* decay topologies are investigated

Decay	Signature	Main SM Background
$e^* {\rightarrow} e \gamma$	2 e.m clusters	QED-Compton, NC-DIS, $\gamma\gamma$
$e^* \rightarrow eZ_{\rightarrow qq}$	electron + 2jets	NC-DIS, γP
$e^* \rightarrow \nu W_{\hookrightarrow qq}$	$P_T^{miss}+ 2 { m jets}$	NC/CC-DIS, γ P
$e^* \rightarrow eZ_{\rightarrow ee}$	3 electrons	NC-DIS, $\gamma\gamma$
$e^* \rightarrow e Z_{\rightarrow \nu\nu}$	$electron + P_T^{miss}$	W production, $\gamma\gamma$
$e^* \rightarrow eZ_{\rightarrow \mu\mu}$	electron + 2 μ	$\gamma\gamma$
$e^* \rightarrow \nu W_{\rightarrow e\nu}$	$electron + P_T^{miss}$	W production, $\gamma\gamma$

 \square Signatures similar to v^*

• If $f = -f' \bowtie C_{ye^*e} = 0$: the cross section in this case is very small

 \mathbf{S} Study only the case f = +f'

How to look for excited electrons

$\underline{\mathbf{e}^{\star} \rightarrow \mathbf{v} \ \mathbf{W}}$	$\rightarrow P_T^{miss}$ + at least 2 jets , similar to $v^* \rightarrow vZ$
<u>e* → e Z</u>	\rightarrow e + at least 2 jets , similar to $v^* \rightarrow eW$

Search for excited leptons at HERA

Preliminary Result for e*

• Total event yields in each decay channel:

Search for e^{*} HERA I+II ($\sqrt{s} = 320$ GeV, 435 pb⁻¹, preliminary)

Selection	Data	SM	Efficiency × BR
$e^* \rightarrow \nu W_{\hookrightarrow qq}$	172	175 ± 39	$\sim 40 \%$
$e^* \rightarrow eZ_{\rightarrow qq}$	351	318 ± 64	$\sim 45 \%$
$e^* {\rightarrow} e \gamma$	112	125 ± 19	60 – 70 %

• Invariant mass distributions for 3 main channels:

Solution In all channels: good agreement between data and SM prediction

Solution Significant deviation from the SM prediction => exclusion regions (f/Λ , M_{e^*})

Preliminary Result: new domain limit

• 95% C.L. exclusion limits:

- \boldsymbol{v} analysis of all \sqrt{s} =320 GeV data made preliminary for DIS 2007 conference
- only 3 main decay channels included, leptonic decay of Z/W not included

✤ At high mass: new H1 limit are more stringent than present LEP or Tevatron results

Update of e* analysis

- 2 improvements since prelim. result:
 - ➔ adding the leptonic decay of Z/W boson
 - → adding $\sqrt{s}=300$ GeV data: → all HERA data has been analysed: 472 pb⁻¹

small effect on derived limit, but channels and extra data included for completeness

Conclusion

• The search for excited leptons (e^{*}, v^*) in the full e[±]p HERA I+II data collected by the H1 at \sqrt{s} = 300 GeV and \sqrt{s} = 320 GeV has been presented

Almost all decay channels investigated

🗴 In all channels: Data and SM predictions in good agreement

No evidence of excited leptons has been found

Upper limits at 95% C.L. are derived
 For ν*: M_{ν*} < 211 GeV are excluded (f=-f' & f/Λ=1/M_{ν*})
 For e*: M_{e*} < 273 GeV are excluded (f=+f' & f/Λ=1/M_{e*})
 Presently the most stringent world limits on high masses e* and ν*

Perspectives:

© Plan: Publish as soon as possible

To extract limit on ($\sigma \times BR$) and f/ Λ

• Limits on ($\sigma \times BR$):

 \blacksquare The data used having the different centre-of-mass energy (\sqrt{s} = 300, 320 GeV)

Limits on ($\sigma \times BR$) at $\sqrt{s} = 320$ GeV is defined as:

$$(\sigma^{\sqrt{s}=320} \times BR)_{lim} = \frac{N_{obs}}{\frac{\sigma^{\sqrt{s}=300}}{\sigma^{\sqrt{s}=320}} L_{\sqrt{s}=300} + L_{\sqrt{s}=320}}$$

• Limits on f/Λ :

• Combined all HERA data with different \sqrt{s} = (300, 320 GeV)

$$(\frac{f}{\Lambda})_{lim} = \frac{\frac{N_{obs}}{L_{\sqrt{s}=300} + L_{\sqrt{s}=320}}}{\sigma^{\sqrt{s}=320} \frac{L_{\sqrt{s}=320}}{L_{\sqrt{s}=300} + L_{\sqrt{s}=320}} + \sigma^{\sqrt{s}=300} \frac{L_{\sqrt{s}=300}}{L_{\sqrt{s}=300} + L_{\sqrt{s}=320}}}$$

N. Trinh - CPPM

Search for excited leptons at HERA

New domain explored limit : e* search

• 95% C.L. exclusion limit for each decay channel:

Solution New domain explored. The combined limit is dominated by the limit of the decay e*->e γ

Systematic errors

- Electron energy scale: 1% -> 3% depending on z
- Hadrons energy scale: 2%
- Θ electron: 3 mrad
- θ jets: 10 mrad central, 5 mrad forward
- Photon identification: 5%
- V $_{\rm ap}$ /V $_{\rm p}$ cut: 10%
- Processes: gP: 15%, NC and CC >= 2jets: 15% and 20%, W: 15%
- Triggers: 3%
- Lumi: 2%

Search for q* (status)

Search for q* using the data obtained during 94-97 period

Search for e*: multi-jets decay

