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1 How does the detection work in HK
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Pi0 background

Parameters to 
reconstruct

Pi0 decays like an electron ! : 

• Direction

• Energy

• PID

• Vertex

• Flavor
• e/pi0

1 How does the detection work in HK

b) Event reconstruction key points a) Principle of event detection

• In some cases, the 2 e-like rings 
overlap.    

Cosmic rays muon background

vtx
direction

Reconstructed 
vertex of 

cosmic ray 
muons

• At high momentum, the 2 
gammas decay are very 
boosted and the rings of 
e+/e- overlap, giving a 2 e-
like rings. 
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2 GNN : Machine Learning based algorithm for reconstruction
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2 GRANT : Machine Learning based algorithm for reconstruction



10

Node : Hit PMT

2 GRANT : Machine Learning based algorithm for reconstruction
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2 GRANT : Machine Learning based algorithm for reconstruction
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Pooling

1D
(1D, #nodes)# of convolutional 

layers
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Minimization of 
the loss function !

Loss function : 
1
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3 Performance comparation: GNN 
vs existing software
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GRANT Existing software

e/mu 

e/pi0 

Energy reconstruction for e & mu (1D)

Vertex reconstruction for e & mu (3D)



GRANT Existing software

e/mu 
99% electron efficiency at 5% muon bg acceptance, 

Dwall, towall analysis: After 2 m, efficiency above 
99.4% ! 

99% electron efficiency at 5% muon bg 

acceptance, 

3 Performance comparation: GNN vs existing software

directionvtx

- : GNN

- : Existing software

Sharp ring Fuzzy ring

ElectronMuon

𝜇−
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For events close to the wall : GNN > existing software 
=> potentially increase FV
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GRANT Existing software

e/pi0 
99% electron efficiency at 25% pi0 bg acceptance

Dwall, towall analysis: After 2 m, efficiency above 
99% ! 

94% electron efficiency at 25% pi0 bg 

acceptance

3 Performance comparation: GNN vs existing software

Fuzzy ring Fuzzyring

ElectronPi0

Decrease pi0 background acceptance => reduce 
systematic errors!
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GNN Existing software

Energy reconstruction for 
e & mu (1D)

Electron : 5.5% resolution at 500 MeV, energy bias 

at ~1.5%

Muon : 2.5% resolution at 500 MeV, energy bias at 
~0.5%

Electron : 7% resolution at 500 MeV, energy bias 

at ~0%

Muon : 6% resolution at 500 MeV, energy bias 
at ~0%

3 Performance comparation: GNN vs existing software
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GNN : 5.5% at 
500 MeV,  

Existing software : 0% biais !0.06 s per event (GNN)
1min30 (Existing software)

Existing 
software : 5%

- : GNN Existing 
software : 7%

- : GNN

BUT : the GNN has a biais 
 (1.5% electron, 0.5% muon at 500 MeV) 

GNN : 2.5% at 
500 MeV,  



GNN Existing software

Vertex reconstruction for 
e & mu (3D)

Electron : 203 cm
Muon:  None

Electron : 22 cm
Muon : 28 cm

3 Performance comparation: GRANT vs existing software
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GNN : 203 cm 
resolution

(Existing software 
: 22 cm)

0.07 s per event (GNN)
1min30 (Existing software)



GNN FitQun

e/mu 
99% electron efficiency at 5% muon bg acceptance, 99% electron efficiency at 5% muon bg 

acceptance, 

e/pi0 
99% electron efficiency at 25% pi0 bg acceptance 94% electron efficiency at 25% pi0 bg 

acceptance

Energy reconstruction for 
e & mu (1D)

Electron : 5.5% resolution at 500 MeV, energy bias 

at ~1.5%

Muon : 2.5% resolution at 500 MeV, energy bias at 
~0.5%

Electron : 7% resolution at 500 MeV, energy bias 

at ~0%

Muon : 6% resolution at 500 MeV, energy bias 
at ~0%

Vertex reconstruction for 
e & mu (3D)

Electron : 203 cm
Muon:  None

Electron : 22 cm
Muon : 28 cm

3 Performance comparation: GRANT vs existing software
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0.1 s per event (GNN)
1min30 (Existing software)



Conclusion.
• Hyper-Kamiokande is the next-generation neutrino detector, 

designed with unparalleled precision. 

• To fully exploit its potential, we need to push our reconstruction 
techniques to the next level. 

• That’s why we’re relying on machine learning, which is proving 
to be a powerful tool for enhancing precision and unlocking HK’s 
full potential for groundbreaking discoveries in neutrino 
physics.



Conclusion.
• Hyper-Kamiokande is the next-generation neutrino detector, 

designed with unparalleled precision. 

• To fully exploit its potential, we need to push our reconstruction 
techniques to the next level. 

• That’s why we’re relying on machine learning, which is proving 
to be a powerful tool for enhancing precision and unlocking HK’s 
full potential for groundbreaking discoveries in neutrino 
physics.

Thank you for your 
attention !! ☺
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