Enhanced Event Reconstruction at Hyper-Kamiokande using Graph Neural Networks

at High Energy

boratoire Leprince-Rin

How does the detection work in HK

MSW effect in the Sun

1

- Non-standard interactions in the Sun Supernovae neutrinos:
- Direct SNv: Constrains SN models
- Relic SNv: Constrains cosmic star formation history

	SK	НК
Site	Mozumi	Tochibora
Overburden	2700 m.w.e.	1700 m.w.e.
Number of ID PMTs	11129	20000
Photo-coverage	40%	20% (x2 efficiency)
Mass/Fiducial mass	50 kton / 22.5 kton	258 kton / 186 kton
Beam power	500 kW to 1 MW	1.3 MW

Main cavern/Detector

- Observe CP violation for lepton at 5 σ
- Precise measurement of δ CP

Access Tunnel-

• High sensitivity to v mass ordering

Proton decay

Probe Grand Unified Theories through

p-decay (world best sensitivity)

21m

73m

Circular Tunnel

How does the detection work in HK

• MSW effect in the Sun

1

- Non-standard interactions in the Supernovae neutri
- Direct SNv: Constrains SN mode
- Relic SNv: Constrains cosmic sta

- Flavor
- Direction

Paraméters to

reconstruct

- Energy
- Vertex

violation for lepton at 5 d surement of δCP /ity to v mass ordering

a) Principle of event detection

Neutrino oscillation

1

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

$$P(\nu_{\alpha} \to \nu_{\beta})(L, E) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) \approx \sin^2 2\theta \sin^2 \left(1.3 \frac{\Delta m^2 [eV^2] L[km]}{E[GeV]}\right)$$

b) Event reconstruction key points

10²

Two flavor approximation in vacuum

Parameters to reconstruct

- Flavor (PID)
- Direction
- Energy

How does the detection work in HK

1

overlap.

Node : Hit PMT

	GRANT	Existing software
e/mu		
e/pi0		
Energy reconstruction for e & mu (1D)		
Vertex reconstruction for e & mu (3D)		

	GRANT	Existing software
e/mu	99% electron efficiency at 5% muon bg acceptance, Dwall, towall analysis: After 2 m, efficiency above 99.4% !	99% electron efficiency at 5% muon bg acceptance,

and a start

		GRANT	Existing software
e/pi0	99% electron efficien Dwall, towall analysis: 99% !	<pre>ncy_at 25% pi0 bg acceptance After 2 m, efficiency above</pre>	94% electron efficiency at 25% pi0 bg acceptance
for the form the fo	<image/> <section-header><section-header><section-header></section-header></section-header></section-header>	Electron identification efficient 1.00 0.95 0.90 0.90 0.95 0.85 GNN FitQun 0.80 Construction of the second seco	ncy vs dwall (e/pi0 separation) + + + + + + + + + + + + + + + + + + +

	GRANT	Existing software
e/pi0	99% electron efficiency at 25% pi0 bg acceptance Dwall, towall analysis: After 2 m, efficiency above 99% !	94% electron efficiency at 25% pi0 bg acceptance
for the true for the error of	Electron identification efficiency vs dwall 1.005 1.000 0.995 0.990 0.990 0.985 0.980 0.980 0.980 0.980 0.980 0.990 0.970	(spectrum of evergy (100 MeV to 1 GeV), e/pi0 separation)
		23

	GNN	Existing software
Vertex reconstruction for	<u>Electron <mark>:</mark> 203 cm</u>	<u>Electron : 22 cm</u>
e & mu (3D)	<u>Muon:</u> None	<u>Muon : 28 cm</u>

0.07 s per event (GNN) 1min30 (Existing software)

	GNN	FitQun
e/mu	99% electron efficiency at 5% muon bg acceptance,	99% electron efficiency at 5% muon bg acceptance,
e/pi0	99% electron efficiency at 25% pi0 bg acceptance	94% electron efficiency at 25% pi0 bg acceptance
Energy reconstruction for e & mu (1D)	Electron : 5.5% resolution at 500 MeV, energy bias at ~1.5% Muon : 2.5% resolution at 500 MeV, energy bias at ~0.5%	Electron : 7% resolution at 500 MeV, energy bias at ~0% Muon : 6% resolution at 500 MeV, energy bias at ~0%
Vertex reconstruction for e & mu (3D)	<u>Electron : 203 cm</u> <u>Muon:</u> None	<u>Electron : 22 cm</u> <u>Muon : 28 cm</u>

0.1 s per event (GNN) 1min30 (Existing software)

Conclusion.

- Hyper-Kamiokande is the next-generation neutrino detector, designed with unparalleled precision.
- To fully exploit its potential, we need to **push our reconstruction techniques** to the next level.
- That's why we're relying on machine learning, which is proving to be a powerful tool for enhancing precision and unlocking HK's full potential for groundbreaking discoveries in neutrino physics.

Conclusion.

- Hyper-Kamiokande is the next-generation neutrino detector, designed with unparalleled precision.
- To fully exploit it Thank you for your pur reconstruction techniques to the attention !! ③
- That's why we're relying on machine learning, which is proving to be a powerful tool for enhancing precision and unlocking HK's full potential for groundbreaking discoveries in neutrino physics.