

Neutrino physics : programs in Japan & Japan-France collaboration

CLINITIE RESPONSE

Les deux infinis

Benjamin Quilain (ILANCE - CNRS/The University of Tokyo)

International Laboratory for Astrophysics, Neutrino and Cosmology Experiments

Λ Ν C E

50th Anniversary of France-Japan Scientific Cooperation, Miraikan, Tokyo, 2023/03/27

I. The past : 50th years ago until 2000

<u>Neutrinos - 50 years ago</u> <u>1. Neutrinos are the only known neutral leptons</u> → Interacts through weak (and grav.) interactions. → 1 light year of lead to stop 50% v ! <u>1 light-year</u> <u>2. Two v were observed : electron and muon neutrinos</u> (v_e & v_u)

<u>3.</u> v are massless particles \rightarrow Like photons .

→ <u>Why</u>: Usual (Dirac) mass term couples left and right handed components : $L_D^{mass} = -\frac{m}{2}\overline{\psi}\psi = \frac{m}{2}(\overline{\psi}_L\psi_R + \overline{\psi}_R\psi_L)$ → But, no right-handed ν had been observed !

1967 : the solar neutrino anomaly

- <u>Sun</u>: Most intense v source on Earth $! \rightarrow 70$ billion v /s /cm² \rightarrow produced through nuclear fusion (ve)
- <u>1967</u>: Davis installed Clore-filled detector in Homestake mine (US) to detect solar v. \rightarrow Rely on inverse β decay : ν_e + ${}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$, $E_{\nu}^{\text{th}} = 0.814 \text{ MeV}$ $\rightarrow {}^{37}\text{Ar}$ collected and counted.

<u>Conclusions</u> : number of observed neutrino = 1/3 expected flux !!

1967 : the solar neutrino anomaly

1. Solar neutrino model is wrong ? But works very well for visible γ ...

- 2. Experimental issue ?
- 3. A monster eats neutrino along their way towards the Earth ?

Neutrino oscillations

• Flavour states (interact) $(v_{e'}v_{\mu}) \neq$ mass states (propagates) $(v_{1'}v_{2})$

 \rightarrow Example :

Neutrino oscillations in vacuum

- <u>Frequency</u> : determined by the mass square difference : $\Delta m^2 = m_2^2 m_1^2$
- <u>Amplitude</u> : determined by the mixing angle θ .

A trip to Kamioka

• A 50 kton water Cherenkov detector, located 1 km underground.

Atmospheric neutrinos in Super-K

• <u>Neutrinos produced in cosmic ray decays.</u>

If no oscillations :Atmospheric fluxes predicts v_{μ} to v_{e} ratio, $R = \frac{\phi_{\nu_{\mu}} + \phi_{\bar{\nu}_{\mu}}}{\phi_{\nu_{e}} + \phi_{\bar{\nu}_{e}}} \approx 2.$ R should be independent from zenith angle as production is isotropic.

1998 : Atmospheric neutrino oscillations

II. The present : 2000 to 2024

Three flavour neutrino oscillations

• <u>3 flavour eigenstates $(v_{\underline{e}}, v_{\underline{\mu}}, v_{\underline{\tau}})$ and <u>3 mass states $(v_{\underline{1}}, v_{\underline{2}}, v_{\underline{3}})$ </u>.</u>

 \rightarrow PMNS symmetries allows to rewrite 3D matrix into three 2D rotations. $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 \\ c_{23} \\ s_{23} \\ -s_{23} \\ c_{23} \end{pmatrix} \begin{pmatrix} c_{13} \\ e^{-i\delta}s_{13} \\ -e^{i\delta}s_{13} \\ c_{13} \end{pmatrix} \begin{pmatrix} c_{12} \\ s_{12} \\ -s_{12} \\ c_{12} \\ -s_{12} \\ c_{12} \\ 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$\frac{3 \text{ mixing angles: } \theta_{23}, \theta_{13}, \theta_{12} \\ 2 \text{ mass square differences : } \Delta m_{32}^{2}, \Delta m_{21}^{2} \\ 1 \text{ Dirac CP violation phase: } \delta_{CP}$$

- <u>Recipe for precise measurement of neutrino oscillations :</u>
 - 1. Precise knowledge of neutrino flavour at production and detection.
 - 2. Precise measurement of the neutrino energy.
 - 3. Precise measurement of the neutrino baseline.
 - \rightarrow Constrain oscillations in L/E.

2010 - today : the Tokai-to-Kamioka experiment

L/E (km/GeV)

T2K results

• 1st direct observation of $v(v_e)$ appearance \rightarrow Breakthrough prize 2015

Three flavour neutrino oscillations

• <u>3 flavour eigenstates $(v_{\underline{e}}, v_{\underline{\mu}}, v_{\underline{\tau}})$ and 3 mass states $(v_{\underline{1}}, v_{\underline{2}}, v_{\underline{3}})$.</u>

 \rightarrow PMNS symetries allows to rewrite 3D matrix into three 2D rotations.

Why measuring CP violation is important?

Why our universe is only made of matter ?

Why measuring CP violation is important?

Why our universe is only made of matter ?

• How do we evolve from a symmetric universe to a matter-dominated

• Searched for decades in quark sector \rightarrow too small.

CP violation first indication by T2K

• T2K accelerator can creates a pure beam of v_{\parallel} or $\overline{v_{\parallel}}$.

III. The future : Hyper-Kamiokande

The next generation observatory : Hyper-K

- <u>Next generation of neutrino observatory in Japan→ construction 2020-27</u>
 - \rightarrow A 260 kton water Cherenkov detector \rightarrow <u>Fiducial Mass ~ 8 x SK.</u>

Super-Kamiokande

	Super-K	Hyper-K	
Site	Mozumi	Tochibora	
Overburden	2780 m.w.e.	1700 m.w.e.	
Number of ID PMTs	11129	20000	
Photo-coverage	40%	20% (×2 efficiency)	
Mass / Fiducial Mass	50 kton / 22.5 kton	258 kton / 186 kton	

Sensitivity to CP violation

• Assuming a run v:v = 1:3 @1.3MW (can be adjusted).

 $\underline{\Theta_{CP}} = -\frac{1}{2} \frac{1}{2} \frac{1}{2}$

 \rightarrow Independent from \downarrow systematic uncertainties.

After CPV is determined, accurate measurement of δ_{CP} will be crucial

	5 years	10 years
CP conserved ($\delta_{CP} = 0$)	8°	6°
Max XPV ($\delta_{CP} = -\pi/2$)	25°	19°

→ Maximal CPV, leptogenesis, symetries of lepton's generations ... → HK will be the world-leading experiment to measure δ_{CP} and $_{21}$ constrains CP-violation in the next 20 years !

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

V

Supernovae neutrinos

- <u>Direct SNv</u>: Constrains SN models.
 Relic SNv: Constrains cosmic star
- <u>Relic SNv</u>: Constrains cosmic star formation history

- Atmospheric 3000 m Becondary cosmic rays N Y Y 0000 m H⁺ Concorde Vµ Everest H
- Observe CP violation for leptons at 5σ
- Precise measurement of δ_{CP} .
- High sensitivity to v mass ordering.

Hyper-K excavation

Hyper-K excavation Disging Mine Entrance

Hyper-K caverns excavation

Dome section

Filtering system cavern

Water system cavern complete ! (13/07/2023)

Finalizing the excavation (this year) !

Conclusions

- Neutrino physics has completely changed in the last 50 years.
 → Highly driven by the discoveries in Japan : neutrino oscillation, precise measurement of PMNS matrix, first hint of CP violation...
 → Collaboration between Japan & France started in 2006.
- <u>Future is even brighter :</u> entered an era where v can be used to probe most fundamental questions about our Universe :
- 1. Are they the source of matter-antimatter asymmetry ?
- \rightarrow <u>C. Quach</u>: use improved reconstruction w/ AI to probe CP violation.
- 2. Probe supernovae exploding in black-hole or neutron stars through history of universe \rightarrow L. Perisse talk.
- 3. Can fundamental interactions be unified at high-E?
- Hyper-K will be the leading experiment in v physics in the next 20 years !

Additional slides

Hyper-K schedule

PMT production & delivery

The Hyper-K collaboration

Solar neutrinos

Physics case

MSW effect in the Sun
Non-standard interactions in the Sun.

 \mathcal{V}_{e}

Solar neutrinos : upturn

- <u>Probe solar v</u>: SK/SNO found a high matter effect in the Sun
 - ↔ Solar upturn shifted to lower energies

- SK deviates from standard upturn scenario > 2σ . [Moriyama S., SK, Neutrino 2016]
- Displacement of the upturn can be explained by :
 - Statistical fluctuation ?
 - Light sterile neutrino ?
 - Non Standard Interaction in the dense Sun ?

Solar neutrinos

Physics case

- \mathcal{V} • MSW effect in the Sun • Non-standard interactions in the Sun. Supernovae neutrinos
 - <u>Direct SNv</u> : Constrains SN models.
 - <u>Relic SNv</u>: Constrains cosmic star formation history

Supernovae neutrinos

- <u>Unique probe for supernovae v</u>: 99 % of SN energy $\rightarrow v$.
 - But direct v detection very rare.
 - HK also sensitive to extra-galactic SNv from Andromeda !

• SN-relic neutrino \rightarrow new constraints

- Andromeda Milky way -100kpc -10kpc -10kpc
- on cosmic star history \rightarrow May be first detected in SK-Gd.

 \rightarrow But spectrum determined by HK : Low energy \leftrightarrow Probe older stars

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

 \mathcal{V}

Supernovae neutrinos

- <u>Direct SNv</u> : Constrains SN models.
- <u>Relic SNv</u>: Constrains cosmic star formation history

GUT and proton decay

 π^0

- Probe Grand Unified Theories at a new scale through proton decay.
- <u>Golden channel</u> : $p \rightarrow e^+ + \pi^0 \rightarrow Almost background free !$
 - \rightarrow Requires 2 γ & reconstructed energy = Invariant $M_{_{\rm P}}$
 - \rightarrow <u>Bkg</u> : Atmospheric v producing e.g. a π^0 .

years \rightarrow 1 order of magnitude beyond current best limits (Super-K)

Focus on CP violation

• <u>CP violation search essentially based on accelerator v: T2HK</u>

- v_{e} appearance in a v_{μ} beam and v_{μ} disappearance & v equivalents.
- Compare $P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$: ideal probe to CP-violation !
- <u>Use T2K beamline</u> : \implies Quick start ! Which relies on 2 milestones.
 - 1. \downarrow time to accumulate statistics \rightarrow Beam upgrade to 1.3 MW.
 - 2. \downarrow systematic uncertainties \rightarrow Constrains ν_{μ} & ν_{ρ} flux before oscillation with two near-detectors.

Sensitivity to CP violation

• Assuming a run v:v = 1:3 @1.3MW (can be adjusted).

- <u>HK 10 years</u> : 5 σ sensitivity on 60% of δ_{CP} values.
- HK has world-best sensitivity to CP violation for the coming generation... if mass-ordering is known !

Precise measurement of δ_{CP}

• After CPV is determined, accurate measurement of δ_{CP} will be crucial

→ Maximal CPV, leptogenesis, symetries of lepton's generations ...

• HK will be the world-leading experiment to measure δ_{CP} and constrains CP-violation in the next 20 years !

Atmospheric neutrinos

Mass-ordering can be measured through matter effects
 → The longer the baseline, the higher the effects

• Mass ordering determined with upward-going multi-GeV v_e sample :

atm. baseline \leq 13000 km \gg 295 km accelerator baseline

- Normal hierarchy : enhancement of $\nu_{\mu} \rightarrow \nu_{e}$.
- <u>Inverted hierarchy</u> : enhancement of $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$.

Combination of atmospheric + beam v

Impact on CPV sensitivity

Sensitivity to mass ordering

- Even if MO is not known when HK starts
- \rightarrow Sensitivity to CPV is little affected if we add atmospheric v.
- <u>MO would be determined by :</u>

 \rightarrow HK after \geq 6-10 years via atmospheric.

The Super-Kamiokande detector

• A 50 kton water Cherenkov detector, located 1 km undeground to stop cosmic muons background.

using ring shape.

Open issues in neutrino oscillations

• <u>What is v mass ordering (MO)</u>: affect nucleosynthesis in Supernovae...

 \rightarrow Oscillations in vacuum provides only $|\Delta m^2|$. \rightarrow Matter effect in the Sun provides : $m_2 > m_1$. \rightarrow Need matter effect in Earth to measure MO. \rightarrow The longer the baseline,

the higher the effect.

0.2

12

14

1.6

0.8

1.8

 δ_{CP} / π

matter-antimatter asymmetry !

Neutrinos ?

What are the possible CP violating processes ?

• <u>CP symmetry</u> : P = parity, C = charge conjugation

• <u>Electrogmagnetic interactions preserves CP symmetry</u>

- Strong interaction (in nucleus) also preserves CP symmetry.
 → Not theoretical, experimentally observed.
- Only weak interaction remains among known interactions !

Precise measurement of δ_{CP}

Precise measurement of δ_{CP}

Matter/antimatter asymmetry

• <u>v CP violation at low E maybe the key to matter/antimatter asymetry</u> \rightarrow Class of theories directly link low E δ_{CP} to matter/antimat. asymetry.

• First step is to actually measure if CP is violated...

Precision on sin δ_{CP}

↔ Precision on leptogenesis models

 $\begin{array}{l} \underline{\text{Lower limit for leptogenesis}:} \\ |\sin\theta_{13} \sin\delta_{\text{CP}}| \geq 0.11 \\ \rightarrow |\sin\delta| \geq 0.78 \end{array}$

Flavour symmetries

• Models of lepton flavour symetries could be also tested

 δ_{CP} = less well-known parameter \rightarrow Limits the model constraints.

Model separation requires :First separation : $\delta [\delta_{CP}] < 30^{\circ}$ Good separation : $\delta [\delta_{CP}] < 23^{\circ}$ Great separation : $\delta [\delta_{CP}] < 5^{\circ}$

 \rightarrow Precision of our experiments ?

Updated systematic uncertainties

• <u>2 very complementary near detectors :</u>

