interesting part

 \bullet At short Distance: QCD theory is enough (physical observables: $\sigma_{total}, m_{J}^{2}, \dots$) Here, we know all the interactions

Hadron production in e^+e^- annihilation

• However, must obey general principles in order to preserves Lorenz Invariance and causality Conservation of probabilit

• This completeness condition is used to formulate *S*− matrix unitarity

$$
ty: \sum \sigma_{total} = 1
$$

Interaction: Mystery !!

• $S^{\dagger}S = 1 \implies$ Optical Theorem

• Total cross section ∝ Im {forward scattering amplitude}

$$
\Pi(q^2) = \int d^4x e^{iq.x} \langle 0 | T\{J^\mu(x) | u(x) | u(x) \} \rangle
$$

 $(x)J_{\mu}(0)$

- What do we obtain using this??
- We avoided question that how exactly hadrons are produced from quarks but we couldn't avoid long distance interactions
- Main contribution of imaginary part comes from *x*² ∼ 1/*q*²
- Annihilation cross-section exhibit threshold behaviour with a small cusp at (for eg. $E = 2m_{\pi}$)
- Contributions of such resonances to total cross-section require analysis beyond perturbative calculations.

What's the way out of this !!

• We assume strong interactions obey STR and preserves causality

 \bullet Hence, $\Pi(q^2)$ must be analytic in complex q^2 plane with cut at real q^2

 \bullet Cauchy theorem: allows to calculate $\Pi(q^2)$ at arbitrary point in $\mathscr C$ plane provided its discontinuity is known at all singularities

Fig. : Showing analytical properties of a typical correlation function in field theory.

$$
\text{If } q^2 = -Q^2 \left(\text{contribution at small} \atop \text{distance } x_0 \sim |\vec{x}| \sim 1/\sqrt{Q^2} \right) = \frac{1}{2\pi i} \oint_C ds
$$

QCD sum rules: Summary

Dispersion relation

- Uses the unitarity and analyticity of the correlation function.
- Can be written directly in terms of hadronic states.
- Correlation function: The matrix element of the quark-gluon interpolating operators taken between the hadronic states.
- The correlation functions are of **dual nature**:
	-
	- At positive q^2 , it has a decomposition in terms of hadronic states \implies Dispersion relation \bullet At $q^2 \to -\infty$, it represents short distance quark-anti-quark fluctuations \Longrightarrow Can be solved using pQCD.

Matching the two gives estimates for the hadronic objects

Idea: To compute hadronic parameters using the analytic properties of the correlation function (treated in the framework of light cone OPE).

Dispersion Relation

(Enables to relate the real part of the hadronic correlation function to its imaginary part)

Light cone OPE (Enables one to write correlation function as a product of Hard scattering kernel and DAs)

Quark Hadron Duality

(Relates the non-perturbative spectral function to the perturbatively calculated correlation function)

Borel Transformation

(To suppress the effect of continuum and higher resonances to reduce the uncertainty due to duality approximation)

A hybrid of SVZ sum rules and hard exclusive processes.

Light cone sum rule(LCSR)

Operator Product Expansion (OPE)

• The short distance physics can be calculated using perturbative QCD and long distance physics can be written

- OPE enables one to separate short and long distance physics.
- in universal non-perturbative objects like condensates or distribution amplitudes (DAs)

Non-local effects in *B* → *Kℓℓ* **system**

$$
\mathcal{A} = -4\pi\alpha_{em}Q_c \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \frac{1}{q^2} (\bar{\ell}\Gamma^{\mu}\ell) \mathcal{H}_{\mu}(B \to K)
$$
\n
$$
\mathcal{H}_{\mu} = i \int d^4x e^{iq.x} \langle K | T \{ \bar{c}(x) \gamma_{\mu} c(x), (C_1 O_1(0) + C_2 O_2(0)) \} | B \rangle
$$
\n
$$
\mathcal{H}_{\mu \text{ fact}} = \mathcal{S}_{\mu\rho} \left(\frac{C_1}{3} + C_2 \right) \langle K | \bar{s} \gamma^{\rho} b | B \rangle
$$
\n
$$
\mathcal{H}_{\mu \text{ non-factor}} = 2C_1 \int d\omega I_{\mu\rho\alpha\beta}(q, \omega) \langle K | \bar{s} \Gamma_{\rho} \delta(\omega - \omega_0) \tilde{G}_{\alpha\beta} b | B \rangle
$$

• Possible future study: Soft gluon effects when it is attached to spectator s quark. Soft gluon effects in weak annihilation.

