Hadron production in e^+e^- annihilation

• At short Distance: QCD theory is enough (physical observables: $\sigma_{total}, m_I^2, \dots$) Here, we know all the interactions

interesting part

Interaction: Mystery !!

• However, must obey general principles in order to preserves Lorenz Invariance and causality Conservation of probability

• This completeness condition is used to formulate S- matrix unitarity

ty:
$$\sum \sigma_{total} = 1$$

• $S^{\dagger}S = 1 \implies \text{Optical Theorem}$

• Total cross section \propto Im {forward scattering amplitude}

$$\Pi(q^2) = \int d^4x e^{iq.x} \langle 0 \mid T\{J^{\mu}(x)\} \langle 0 \mid T\{J^{\mu}(x)\} \rangle d^4x e^{iq.x} \langle 0 \mid T\{J^{\mu}(x)\} \rangle d^4x e^{i$$

 $x)J_{\mu}(0)$

- What do we obtain using this??
- We avoided question that how exactly hadrons are produced from quarks but we couldn't avoid long distance interactions
- Main contribution of imaginary part comes from $x^2 \sim 1/q^2$
- Annihilation cross-section exhibit threshold behaviour with a small cusp at (for eq. $E = 2m_{\pi}$)
- Contributions of such resonances to total cross-section require analysis beyond perturbative calculations.

What's the way out of this !!

• We assume strong interactions obey STR and preserves causality

• Hence, $\Pi(q^2)$ must be analytic in complex q^2 plane with cut at real q^2

Fig. : Showing analytical properties of a typical correlation function in field theory.

is known at all singularities

If
$$q^2 = -Q^2$$

 $and a contribution at small
 $distance x_0 \sim |\vec{x}| \sim 1/\sqrt{Q^2}$$

• Cauchy theorem: allows to calculate $\Pi(q^2)$ at arbitrary point in $\mathscr C$ plane provided its discontinuity

QCD sum rules: Summary

- The correlation functions are of **dual nature**:

 - At $q^2 \rightarrow -\infty$, it represents short distance quark-anti-quark fluctuations \Longrightarrow Can be solved using pQCD. • At positive q^2 , it has a decomposition in terms of hadronic states \implies Dispersion relation

Dispersion relation

- Uses the unitarity and analyticity of the correlation function.
- Can be written directly in terms of hadronic states.

Matching the two gives estimates for the hadronic objects

• Correlation function: The matrix element of the quark-gluon interpolating operators taken between the hadronic states.

Light cone sum rule(LCSR)

Idea: To compute hadronic parameters using the analytic properties of the correlation function (treated in the framework of light cone OPE).

A hybrid of SVZ sum rules and hard exclusive processes.

Dispersion Relation

(Enables to relate the real part of the hadronic correlation function to its imaginary part)

Light cone OPE (Enables one to write correlation function as a product of Hard scattering kernel and DAs)

Quark Hadron Duality

(Relates the non-perturbative spectral function to the perturbatively calculated correlation function)

Borel Transformation

(To suppress the effect of continuum and higher resonances to reduce the uncertainty due to duality approximation)

Operator Product Expansion (OPE)

- OPE enables one to separate short and long distance physics.
- in universal non-perturbative objects like condensates or distribution amplitudes (DAs)

• The short distance physics can be calculated using perturbative QCD and long distance physics can be written

LCSR uses the light cone OPE

Non-local effects in $B \rightarrow K\ell\ell$ system

$$\begin{aligned} \mathscr{A} &= -4\pi\alpha_{em}Q_c \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \frac{1}{q^2} \left(\bar{\ell}\Gamma^{\mu}\ell\right) \mathscr{H}_{\mu}(B \to K) \\ \mathscr{H}_{\mu} &= i \int d^4 x e^{iq.x} \langle K | T\{\bar{c}(x)\gamma_{\mu}c(x), (C_1O_1(0) + C_2O_2(0))\} \\ \mathscr{H}_{\mu \ fact} &= \mathscr{S}_{\mu\rho} \left(\frac{C1}{3} + C_2\right) \langle K | \bar{s}\gamma^{\rho}b | B \rangle \\ \mathscr{H}_{\mu \ non-fact} &= 2C_1 \int d\omega I_{\mu\rho}d\omega \\ \end{aligned}$$

• Possible future study: Soft gluon effects when it is attached to spectator s quark. Soft gluon effects in weak annihilation.

$_{\alpha\beta}(q,\omega)\langle K|\bar{s}\Gamma_{\rho}\delta(\omega-\omega_{0})\tilde{G}_{\alpha\beta}b|B\rangle$

