



# Joint Rubin/Euclid image deconvolution: **Rubin Images at Euclid Resolution**



**Jean-Luc Starck** http://jstarck.cosmostat.org

**Collaborators: Utsav Akhaury (EPFL)**, Pascale Jablonka (EPFL), Frederic Courbin (ICREA, Spain)

**Euclid launch**, July 1st, 2023



















### -Euclid:

- High resolution: good for galaxies detection and shape measurement.
- Need extra colors for redshift estimation.

### **Rubin**:

- More bands
- Lower resolution (blending of galaxies, etc)

### Ideally, we would like to have a Joint Euclid-Rubin (JEUBIN Catalog), using both Euclid resolution and Rubin colours.





U. Akhaury, P. Jablonka, F. Courbin, and J.-L. Starck, "Joint multi-band deconvolution for Euclid and Rubin images", Son Cosmo Stat submitted, 2024.







#### galaxy



#### Ground: Subaru (8.2m)





# **Observations**



#### Galaxy observation







Space: HST (2.4m)















Sandard deconvolution framework:





# **Galaxies Survey Image Deconvolution**



H is huge !!!







### **Detection + Classification stars/galaxies**

### Galaxies



















## **Euclid-Rubin Image Relation**

### Rubin Images

$$\mathbf{y}_{r} = \mathbf{h}_{r} * \mathbf{x}_{r}^{t} + \eta_{r}$$
$$\mathbf{y}_{i} = \mathbf{h}_{i} * \mathbf{x}_{i}^{t} + \eta_{i}$$
$$\mathbf{y}_{z} = \mathbf{h}_{z} * \mathbf{x}_{z}^{t} + \eta_{z}$$

### Euclid Image

$$\mathbf{y}_{euc} = \mathbf{h}_{euc} * \mathbf{x}_{euc}^t + \eta_{euc}$$

$$\mathbf{x}_{euc}^t = \alpha_r \mathbf{x}_r^t + \alpha_i \mathbf{x}_i^t + \alpha_z \mathbf{x}_z^t$$











### **The Rubin-Euclid Deconvoluton Problem**



$$L_r(\mathbf{x}_r) = \frac{1}{2} \left\| \frac{\mathbf{h}_r * \mathbf{x}_r - \mathbf{y}_r}{\sigma_r} \right\|_F^2 + \lambda_r$$

$$L_i(\mathbf{x}_i) = \frac{1}{2} \left\| \frac{\mathbf{h}_i * \mathbf{x}_i - \mathbf{y}_i}{\sigma_i} \right\|_F^2 + \lambda_c$$

$$L_{z}(\mathbf{x}_{z}) = \frac{1}{2} \left\| \frac{\mathbf{h}_{z} * \mathbf{x}_{z} - \mathbf{y}_{z}}{\sigma_{z}} \right\|_{F}^{2} + \gamma_{z}$$

$$\min_{x_r, x_i, x_z} L_r(x_r) +$$













Optimisation

$$\mathbf{x}_{\{r,i,z\}}^{[k+1]} = \mathbf{x}_{\{r,i,z\}}^{[k]} - \beta_{\{r,i,z\}} \nabla L_{\{r,i,z\}} \left(\mathbf{x}_{\{r,i,z\}}^{[k]}\right)$$

$$\mathbf{Step Sizes}$$

$$\beta_r, \beta_i, \beta_z \in \mathbb{R}^n$$

$$\nabla L_r(\mathbf{x}_r) = \frac{\mathbf{h}_r^T * (\mathbf{h}_r * \mathbf{x}_r - \mathbf{y}_r)}{\|\sigma_r\|_F^2} + 2\lambda_{constr} \alpha_r \mathbf{h}_{cuc}^T * \left[\frac{\mathbf{h}_{euc} * \sum_c \alpha_c \mathbf{x}_c - \mathbf{y}_{euc}}{\|\sigma_{euc}\|_F^2}\right]$$

$$\nabla L_i(\mathbf{x}_i) = \frac{\mathbf{h}_r^T * (\mathbf{h}_i * \mathbf{x}_i - \mathbf{y}_i)}{\|\sigma_i\|_F^2} + 2\lambda_{constr} \alpha_i \mathbf{h}_{euc}^T * \left[\frac{\mathbf{h}_{euc} * \sum_c \alpha_c \mathbf{x}_c - \mathbf{y}_{euc}}{\|\sigma_{euc}\|_F^2}\right]$$

$$\nabla L_i(\mathbf{x}_i) = \frac{\mathbf{h}_r^T * (\mathbf{h}_i * \mathbf{x}_i - \mathbf{y}_i)}{\|\sigma_i\|_F^2} + 2\lambda_{constr} \alpha_i \mathbf{h}_{euc}^T * \left[\frac{\mathbf{h}_{euc} * \sum_c \alpha_c \mathbf{x}_c - \mathbf{y}_{euc}}{\|\sigma_{euc}\|_F^2}\right]$$

$$\nabla L_{r}(\mathbf{x}_{r}) = \frac{\mathbf{h}_{r}^{\top} * (\mathbf{h}_{r} * \mathbf{x}_{r} - \mathbf{y}_{r})}{\left\|\sigma_{r}\right\|_{F}^{2}} + 2\lambda_{constr}\alpha_{r}\mathbf{h}_{euc}^{\top} * \left[\frac{\mathbf{h}_{euc} * \sum_{c} \alpha_{c}\mathbf{x}_{c} - \mathbf{y}_{euc}}{\left\|\sigma_{euc}\right\|_{F}^{2}}\right]$$
$$\nabla L_{i}(\mathbf{x}_{i}) = \frac{\mathbf{h}_{i}^{\top} * (\mathbf{h}_{i} * \mathbf{x}_{i} - \mathbf{y}_{i})}{\left\|\sigma_{i}\right\|_{F}^{2}} + 2\lambda_{constr}\alpha_{i}\mathbf{h}_{euc}^{\top} * \left[\frac{\mathbf{h}_{euc} * \sum_{c} \alpha_{c}\mathbf{x}_{c} - \mathbf{y}_{euc}}{\left\|\sigma_{euc}\right\|_{F}^{2}}\right]$$
$$\nabla L_{z}(\mathbf{x}_{z}) = \frac{\mathbf{h}_{z}^{\top} * (\mathbf{h}_{z} * \mathbf{x}_{z} - \mathbf{y}_{z})}{\left\|\sigma_{z}\right\|_{F}^{2}} + 2\lambda_{constr}\alpha_{z}\mathbf{h}_{euc}^{\top} * \left[\frac{\mathbf{h}_{euc} * \sum_{c} \alpha_{c}\mathbf{x}_{c} - \mathbf{y}_{euc}}{\left\|\sigma_{euc}\right\|_{F}^{2}}\right]$$









#### A function's gradient is Lipschitz continuous if :

### In our case:

Substituting the individual loss functions, we get:

$$\left\| \nabla f(\mathbf{x}') - \nabla f(\mathbf{x}) \right\|$$

$$\left\| \nabla L_{\{r,i,z\}} \left( \mathbf{x}_{\{r,i,z\}}' \right) - \nabla L_{\{r,i,z\}} \left( \mathbf{x}_{\{r,i,z\}} \right) \right\| \leq C_{\{r,i,z\}} \left\| \mathbf{x}_{\{r,i,z\}}' - \mathbf{x}_{\{r,i,z\}} \right\|$$

 $C_{\{r,i,z\}} \geq \frac{\mathbf{h}_{\{z\}}}{z}$ 

$$\beta_{\{r,i,z\}} \leq \frac{1}{C_{\{r,i,z\}}}$$





 $\leq C \|\mathbf{x}' - \mathbf{x}\|$ where C is the Lipschitz constant

$$\frac{\left\{ r,i,z \right\}}{\left\| \boldsymbol{\sigma}_{\left\{ r,i,z \right\}} \right\|_{F}^{2}} + \frac{2\lambda_{constr}\alpha_{\left\{ r,i,z \right\}}^{2}\boldsymbol{h}_{euc}^{\top} * \boldsymbol{h}_{euc}}{\left\| \boldsymbol{\sigma}_{euc} \right\|_{F}^{2}}$$

Hence, we choose

$$\beta_{\{r,i,z\}} = \frac{1}{\left(1 + 10^{-5}\right)C_{\{r,i,z\}}}$$





### **Ground Truth Images**

- HST cutouts of 128 × 128 pixels from GOODS-N and GOODS-S in the following filters:
  - F606W
  - F775W
  - F850LP



## **Noisy Simulations**

- Calculated fractional flux contributions  $(\alpha_r, \alpha_i, \alpha_z)$  from filter curves
- Convolved ground-truth images with corresponding PSFs
- Added White Gaussian noise such that
  - *Rubin*-simulated images have a signal-to-noise (S/N) ratio ranging between 12 and 28 •
  - *Euclid*-simulated images have a signal-to-noise (S/N) ratio ranging between 20 and 45



### **Experiments**



**HST Filters** 

wavelength  $(\mu m)$ 

$$\mathbf{y}_{r} = \mathbf{h}_{r} * \mathbf{x}_{r}^{t} + \eta_{r}$$
$$\mathbf{y}_{i} = \mathbf{h}_{i} * \mathbf{x}_{i}^{t} + \eta_{i}$$
$$\mathbf{y}_{z} = \mathbf{h}_{z} * \mathbf{x}_{z}^{t} + \eta_{z}$$
$$\mathbf{x}_{euc}^{t} = \alpha_{r}\mathbf{x}_{r}^{t} + \alpha_{i}\mathbf{x}_{i}^{t} + \alpha_{z}\mathbf{x}_{z}^{t}$$
$$\mathbf{y}_{euc} = \mathbf{h}_{euc} * \mathbf{x}_{euc}^{t} + \eta_{euc}$$









# **Experiment 1**



- Assume 3 separately placed Gaussians in each channel (corresponding to LSST channels)
- The joint image (Euclid) is a linear sum of these channels
- No Flux Leakage from one channel to another







# Results

Euclid: VIS

| Rubin: <i>r</i> -band | Joi  |
|-----------------------|------|
| Rubin: <i>i</i> -band | Joir |
|                       |      |
| Rubin: z-band         | Joir |











- Algorithm run for 200 iterations
- Convergence within 50-100 iterations



### Convergence









Plug-and-Play Image Restoration with Deep Denoiser Prior, Zhang et al., 2021

| NMSE           | r-band | <i>i</i> -band |
|----------------|--------|----------------|
| Pre-denoising  | 0.059  | 0.041          |
| Post-denoising | 0.058  | 0.038          |
| % improvement  | 1.69%  | 7.32%          |



# **Post-Processing Denoising**

*z*-band 0.053 0.038 28.3%









![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_15_Picture_0.jpeg)

# S/N before deconvolution

![](_page_15_Figure_2.jpeg)

### S/N after deconvolution

![](_page_15_Figure_5.jpeg)

cea

*i*-band magnitude (MAG\_AUTO)

![](_page_15_Figure_8.jpeg)

![](_page_15_Figure_9.jpeg)

![](_page_15_Picture_10.jpeg)

![](_page_15_Picture_11.jpeg)

![](_page_15_Picture_12.jpeg)

![](_page_16_Picture_0.jpeg)

# **Experiment on CFHT Images (Perseus Cluster) / Euclid ERO Image**

CFHT: Band r

Euclid Early Release Observation (ERO)

![](_page_16_Picture_3.jpeg)

Computation time: 5s on a single CPU.

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

U. Akhaury, P. Jablonka, F. Courbin, and J.-L. Starck, "Joint multi-band deconvolution for Euclid and Rubin images", submitted, 2024.

- A new method for deconvolving Rubin images using Euclid information
  - → Very nice results : resolution, flux, SNR ...
  - Deep Learning post-processing
- ✓ Perspectives:
  - Include the Euclid in flight PSF model
  - **Use MCCD method for CFHT images.**
  - Use more efficient optimisation techniques (pre-conditioner, proximal methods)
  - **Estimate uncertainties (Conformalized Quantile Regression)**

![](_page_17_Picture_12.jpeg)

![](_page_17_Picture_13.jpeg)

→ Experiment on real data (CFHT/Euclid): could be improved with a PSF estimations for both CFHT and Euclid.

![](_page_17_Picture_17.jpeg)