

AXIS 1: NUCLEAR PHYSICS CENTER

Scientific Advisory Board: meeting n°1

 \approx /> \otimes \checkmark \gg \sim \checkmark \sim \sim \sim

 \bigotimes

GANIL

NEN

S3 – SUPER SEPARATOR SPECTROMETER

- Wide range (H to U) of high intensity primary beams (10 μ Amp) •
- High primary beam rejection and high acceptance spectrometer •

NEN

S3 – SUPER SEPARATOR SPECTROMETER

- The RIBs are produced by fusion evaporation
- Pre-selected by the in-flight spectrometer S3
- Transported to the gas cell in the converging mode

S3 equipex:

- 22 M€
- 400 ETP (12 years)

S3 LOW ENERGY BRANCH (S3-LEB)

S3 LOW ENERGY BRANCH (S3-LEB)

KU LEUVE

- Broad band lasers in the gas cell to look for atomic transitions ٠
- Narrow band ionization in the gas jet ٠
- High resolution spectroscopy (300 MHz resolution, isomer purification) ٠

PILGRIM

Beam

MR-TOF MS

2 Ge

detectors

S3 LOW ENERGY BRANCH (S3-LEB)

- After 10 years of construction and commissioning at LPC, S³LEB moved to GANIL in March
- Installation at S³:
 - Vacuum and related equipment reconnected and tested
 - HV and RF cabling and final alignments ongoing, water and gas connections to be done
 - Recommissioning to start soon, with e.g. total (gas cell) efficiency tests using a Ra
 recoil source foreseen

RESONANT LASER IONIZATION SPECTROSCOPY

Resonant Laser Ionization method:

- Gives an extra selection in Z to the ions of interest
 - Only one given element (isomer) is ionised with the chosen combination of photons.
- Increasing the resolution of the system can give access to the hyperfine structure
 - Due to the coupling of the nucleus with the electronic orbital

RESONANT LASER IONIZATION SPECTROSCOPY

Resonant Laser Ionization method:

- Scan the laser frequency of the transition to measure isotope shifts
 - Information on charge radii
- Hyperfine splitting
 - Give access to deformation, spins and magnetic moments

MASS SPECTROMETRY

- The MR-TOF MS is an electrostatic ion trap
- Increase the TOF by multiple reflections
- Purification and mass measurements

PERSPECTIVES AND ONLINE COMMISSIONING

protons

22

(MeV)

S 18

₆₈Er

2026: Start physics commissioning of S³ with reaction ¹¹⁶Sn(⁴⁰Ar, 4n)¹⁵¹Er:

- Opportunity to study the single-particle states and high-spin isomers around the N = 82 shell closure
 >2026:
- Production of actinium by asymmetric reactions (⁴⁰Ar + ¹⁷⁵Lu and ²⁰Ne + ¹⁹⁷Au)
- Production of N = Z nuclei (⁵⁰Cr + ⁵⁸Ni)

Courtesy: S. Geldhof

06/11/2024

NPC: SAB MEETING 1 – A. DE ROUBIN

LISE++ simulations (courtesy H. Savajols)

PERSPECTIVES AND ONLINE COMMISSIONING

After online commissioning, start of scientific programme:

UNI(AEN

- 11 pre-proposals/Letters of Intent prepared for workshop back in 2018, re-discussed in 2022
- Additional abstracts on neutron-deficient (heavy-)medium mass nuclei (Z = 50 to Z = 82) in 2022

PROTON RADIOACTIVITY AT LOW ENERGY

- Proton dripline:
 - Nuclear interaction is not enough to bind nucleons together
 - Nucleons are bind by coulomb and centrifugal barrier
- Proton radioactivity:
 - Separation energy: $S_p < 0$
 - Proton travel through the barriers by quantum tunneling effect
 - The proton has a given half-live
- Study of the nuclear structure beyond the dripline:
 - Unique possibility to probe nuclear structure far from stability
 - Determination of individual states for protons and neutrons
- \sim 30 proton emitting nuclei are known with Z > 50:
 - 20 proton emissions from long-lived excited states
 - From ${}^{109}_{53}$ I (lightest) to ${}^{185}_{83}$ Bi (heaviest)
 - For most of them the mass has not been measured directly
 - No laser spectroscopy has been done on them

CHARACTERIZATION OF THE PROTON RADIOACTIVITY

To fully characterize the proton radioactivity, one needs:

- Observation of the emitted proton
- The energy released in the decay Q_p
- The angular momentum carried by the proton I_p
- The probability to find the daughter nucleus in its ground state or in a low-lying excited state
 - This probability is the so-called fine structure effect of the proton emission
 - It depends strongly on the shape of the nucleus.

The proton radioactivity lifetime depends on these factors:

- Deformation
- Angular momentum of the emitted proton
- Residual interaction between valence proton and neutron
 - Especially in case of odd-odd nuclei

CHARACTERIZATION OF THE PROTON RADIOACTIVITY

To fully characterize the proton radioactivity, one needs:

- Observation of the emitted proton
- The energy released in the decay Q_p
- The angular momentum carried by the proton I_p
- The probability to find the daughter nucleus in its ground state or in a low-lying excited state
 - This probability is the so-called fine structure effect of the proton emission
 - It depends strongly on the shape of the nucleus.

The proton radioactivity lifetime depends on these factors:

- Deformation
- Angular momentum of the emitted proton
- Residual interaction between valence proton and neutron
 - Especially in case of odd-odd nuclei

I_p angular momentum:

• Laser spectroscopy

Q_p released energy:

Mass measurement

Nuclear deformation:

- Laser spectroscopy
- Mass spectrometry

PROTON EMITTERS ACCESSIBLE AT S3

		I S3 (A/Q=3)	AfterLEB	Fast LEB	I S3 (A/Q=7)	AfterLEB	After Fast LEB
1081	36ms	23	0,00	0,35	115	0,01	1,76
117La	23,5ms	4,45E+00	0,00	0,04	22,25	0,00	0,21
146Tm	68ms	120	0,36	3,12	600	1,80	15,59
151Lu	80,6ms	1,10E+03	3,37	28,68	5500	16,87	143,39
150Lu	45ms	160	0,06	2,97	800	0,32	14,87
166Ir	10,5ms	190	0,00	0,28	950	0,00	1,42

Courtesy: L. Caceres

LASER SPECTROSCOPY BEYOND THE P-DRIPLINE

X.F. Yang, S.J. Wang, S.G. Wilkins et al., Laser spectroscopy for the study of exotic nuclei, Progress in Particle and Nuclear Physics (2022) doi: https://doi.org/10.1016/j.ppnp.2022.104005. 06/11/2024 NPC: SAB MEETING 1 – A. DE ROUBIN

MASS SPECTROMETRY BEYOND THE P-DRIPLINE

PRL 100, 012501 (2008)

PHYSICAL REVIEW LETTERS

week ending 11 JANUARY 2008

First Penning Trap Mass Measurements beyond the Proton Drip Line

C. Rauth,¹ D. Ackermann,¹ K. Blaum,² M. Block,^{1,*} A. Chaudhuri,³ Z. Di,⁴ S. Eliseev,^{1,5} R. Ferrer,² D. Habs,⁶ F. Herfurth,¹ F. P. Heßberger,¹ S. Hofmann,^{1,7} H.-J. Kluge,¹ G. Maero,¹ A. Martín,¹ G. Marx,³ M. Mukherjee,^{1,†} J. B. Neumayr,⁶ W. R. Plaß,⁴ S. Rahaman,^{1,‡} D. Rodríguez,^{8,§} C. Scheidenberger,^{1,4} L. Schweikhard,³ P. G. Thirolf,⁶ G. Vorobjev,^{1,5} and C. Weber^{1,2,‡}

- Direct mass measurement of proton emitting nuclei:
 - To test mass models
 - To study competition between α decay and proton emission (also β for some cases)
 - To determine the proton drip line location
- First direct mass measurement of a proton emitter nuclei
 - $^{147}_{69}Tm$ at SHIPTRAP

P-BOX – THE SEARCH FOR NEW P-EMITTING NUCLEI

Q-values:

- Play a major role in the evaluation of half-lives
- A small change in the value of 0.1 MeV changes the half-life value of the magnitude of one to two order.

Search for new proton emitting states:

- Investigation of the "transition phase" in an isotopic chain
- Fine definition of the dripline

M.G. Srinivas et al., NPA 1036 (2023) 122673J.P. Cui, et al., Phys. Rev. C 101 (2020) 014301Z.-Q. Sheng, et al., Chin. Phys. C 39 (2015) 024102M. Gonçalves, et al., Phys. Lett. B 774 (2017) 14

Table 3

Comparison of evaluated half-lives using present work (PW) for the ground state to ground state transitions with that of theoretical predictions [97–99].

	Reactions	Q	$logT_{1/2}(s)$		
		MeV	PW	[97–99]	
	$^{108}I \rightarrow ^{107}Te$	0.6	0.0912 1,23 s	-1.394 40 ms	
	$^{118}La \rightarrow ^{117}Ba$	0.378	5.568 1,23 s	8.407 40 ms	
	$^{122}Pr \rightarrow ^{121}Ce$	0.526	2.0521	3.448	
	$^{126}Pm \rightarrow ^{125}Nd$	0.759	-0.611	-1.492	
	$^{127}Pm \rightarrow ^{126}Nd$	0.545	2.789	3.795	
	$^{130}Eu \rightarrow ^{129}Sm$	1.028	-2.996	-4.974	
	$^{133}Eu \rightarrow ^{132}Sm$	0.675	1.369	1.101	
	$^{136}Tb \rightarrow ^{135}Gd$	0.918	-1.042	-2.784	
	$^{137}Tb \rightarrow ^{136}Gd$	0.759	0.143	0.047	
	$^{142}Ho \rightarrow ^{141}Dy$	0.554	4.88	6.34	
	$^{148}Tm \rightarrow ^{147}Er$	0.489	1.593	9.78	
	$^{152}Lu \rightarrow ^{151}Yb$	0.833	1.9327 85 s	0.827 7 s	
	$^{153}Lu \rightarrow ^{152}Yb$	0.609	4.118	6.384	
	$^{162}Re \rightarrow ^{161}W$	0.764	3.2612	3.831	
	$^{163}Re \rightarrow ^{162}W$	0.706	3.3796	5.278	
	$^{169}Ir \rightarrow ^{168}Os$	0.621	6.1471	8.675	
	$^{169}Au \rightarrow ^{168}Pt$	1.961	-6.064	-8.808	
	$^{170}Au \rightarrow ^{169}Pt$	1.474	-1.262	-5.221	
	$^{172}Au \rightarrow ^{171}Pt$	0.9	0.6942	2.411	
	$^{173}Au \rightarrow ^{172}Pt$	0.992	0.708	0.73	
	$^{176}Tl \rightarrow ^{175}Hg$	1.25	-1.078	-2.32	
	$^{178}Tl \rightarrow ^{177}Hg$	0.738	3.398	6.866	
	$^{179}Tl \rightarrow ^{178}Hg$	0.727	4.462	7.147	
	$^{184}Bi \rightarrow ^{183}Pb$	1.327	1.056	-2.675	
	185 Pb	1.083	2.03	0.546	
13	01 186 Pb	1.019	2.157	1.579	

P-BOX – THE SEARCH FOR NEW P-EMITTING NUCLEI

Q-values:

- Play a major role in the evaluation of half-lives
- A small change in the value of 0.1 MeV changes the half-life value of the magnitude of one to two order.

Search for new proton emitting states:

- Investigation of the "transition phase" in an isotopic chain
- Fine definition of the dripline

M.G. Srinivas *et al.*, NPA **1036** (2023) 122673J.P. Cui, *et al.*, Phys. Rev. C **101** (2020) 014301Z.-Q. Sheng, *et al.*, Chin. Phys. C **39** (2015) 024102M. Gonçalves, et al., Phys. Lett. B **774** (2017) 14

Table 3

Comparison of evaluated half-lives using present work (PW) for the ground state to ground state transitions with that of theoretical predictions [97–99].

Reactions	Q	$logT_{1/2}(s)$	$\log T_{1/2}(s)$		
	MeV	PW	[97–99]		
$^{108}I \rightarrow ^{107}Te$	0.6	0.0912 1,23	s -1.394	40 ms	
$^{118}La \rightarrow ^{117}Ba$	0.378	5.568 1,23	S 8.407	40 ms	
$^{122}Pr \rightarrow ^{121}Ce$	0.526	2.0521	3.448		
$^{126}Pm \rightarrow ^{125}Nd$	0.759	-0.611 245	ms -1.492	32 ms	
$^{127}Pm \rightarrow ^{126}Nd$	0.545	2.789 615	ms 3.795	\sim 1:45 k	
$^{130}Eu \rightarrow ^{129}Sm$	1.028	-2.996	-4.974		
$^{133}Eu \rightarrow ^{132}Sm$	0.675	1.369 23 s	1.101	12 s	
$^{136}Tb \rightarrow ^{135}Gd$	0.918	-1.042 90 n	ns –2.784	1,6 s	
$^{137}Tb \rightarrow ^{136}Gd$	0.759	0.143 1,4	S 0.047	1,1 s	
$^{142}Ho \rightarrow ^{141}Dy$	0.554	4.88	6.34		
$^{148}Tm \rightarrow ^{147}Er$	0.489	1.593	9.78		
$^{152}Lu \rightarrow ^{151}Yb$	0.833	1.9327 85 s	0.827	7 s	
$^{153}Lu \rightarrow ^{152}Yb$	0.609	4.118	6.384		
$^{162}Re \rightarrow ^{161}W$	0.764	3.2612	3.831		
$^{163}Re \rightarrow ^{162}W$	0.706	3.3796	5.278		
$^{169}Ir \rightarrow ^{168}Os$	0.621	6.1471	8.675		
$^{169}Au \rightarrow ^{168}Pt$	1.961	-6.064	-8.808		
$^{170}Au \rightarrow ^{169}Pt$	1.474	-1.262	-5.221		
$^{172}Au \rightarrow ^{171}Pt$	0.9	0.6942	2.411		
$^{173}Au \rightarrow ^{172}Pt$	0.992	0.708	0.73		
$^{176}Tl \rightarrow ^{175}Hg$	1.25	-1.078	-2.32		
$^{178}Tl \rightarrow ^{177}Hg$	0.738	3.398	6.866		
$^{179}Tl \rightarrow ^{178}Hg$	0.727	4.462	7.147		
$^{184}Bi \rightarrow ^{183}Pb$	1.327	1.056	-2.675		
186 185 Pb	1.083	2.03	0.546		
01 186 <u>Pb</u>	1.019	2.157	1.579		

P-BOX – THE SEARCH FOR NEW P-EMITTING NUCLEI

Investigation of the dripline:

- High precision Q-values measurements at the dripline
- Finer identification of new proton emitting nuclei
- Observation of the emitted proton
 - Clear definition of the dripline

P-box:

- TPC-like detector after the S-shape RFQ
 - Benefit from the laser selection \rightarrow pure beam
 - TPC is not sensitive to $\beta^+ \rightarrow$ no contaminated spectra
- Gas ionization to see the proton
- No need for the full trace → detector walls made of Si detectors → proton energy measurement

BUT: No entrance window

- Need for simulations and preliminary studies for the detector
- Project for a 2 years postdoc

