

R.M. Pérez-Vidal

14/01/2025, Lyon

Replay

Topology. conf List of Narval actors to run and chain together all the configuration files **ADL**/ Calculated signal basis for each ATC, needed for the PSA

ADF.conf Definition of adf frames used for this analysis

gen_conf.py Generator of the configuration files for each actor and output directory.

Conf/ Configurations of actors and calibrations directory, read during initialization

Data/ Link to the experimental data and spectra directory (ln -s Path_to_Data/Data/Data)

Out/ Output data and spectra directory produced during data replay. It is created by gen_conf.py. Same structure as Data directory.

FEMUL Narval-emulator program used when the data needs to be replayed after an experiment has been performed

Directories structure

The directory where you produce your data contains some standard sub-directories (e.g. /agatadisks/ExpName(*_EXP_XXX) /run_XXXX_date)

Conf: Configuration of actors, calibrations, ... for each detector **00A**, **00B**, **00C** ... **Builder**, **Ancillaries**, **Global**, **Merger** with minimal differences between online and offline

Data: Data and spectra produced during the experiment
Online writes data here
Offline replay takes data from here

Out: Data and spectra produced during data replay
Offline writes data here

Configuration directory

Conf/Crystals(00A,...)

- BasicAFC.conf
- BasicAFP.conf
- CrystalProducerATCA.conf
- CrystalProducer.conf
- PreprocessingFilter.conf
- PreprocessingFilterPSA.conf
- PSAFilter.conf
- PostPSAFilter.conf
- RecalEnergy2.cal
- Trapping.cal
- xdir_1325-1340.cal
- xinv_1325-1340.cal

Conf/Builder

• EventBuilder.conf

Conf/Merger

- EventMerger.conf
- TrackingFilter.conf
- CrystalPositionLookUpTable
- TreeBuilder.conf

Data ProcessingUseful programs

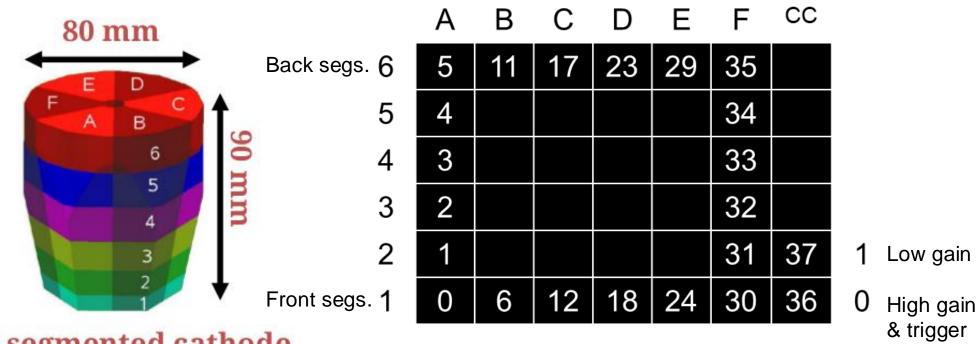
The number of channels (38 x number of detectors) to be calibrated and checked at each analysis level is too large to be done one by one: **automatic tools and procedures are distributed**

- o TkT & Mat spectrum viewer: to plot any spectrum produced all along the actors chain
- o **RecalEnergy:** Analysis of spectra looking for peaks
- o **xTalkSort**, **xTalkMakex**, **TalkInvert**: to sort and analyze the AGATA events dumped into event energy.bdat.0000 to determine the crosstalk correction coefficients
- o **SortPsaHits:** Sort of PSA hits (special format) to determine neutron damage correction parameters
- o solveTT.py: Optimize time alignment of "equal" detectors

Binary spectra

- Simple C-style multidimentional (max 6) arrays written mostly in binary format
- Format not recorded in the file, typically written as a part of the file name:

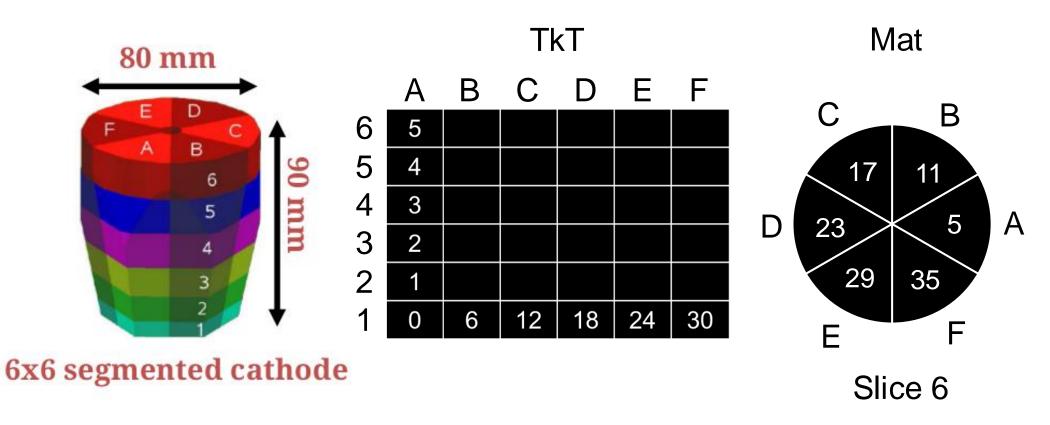
Actor__Library-NbSpectra-Length-Format__Type.spec dump file of an array defined as:


Format ActorSpecType[Library][NbSpectra][Length]

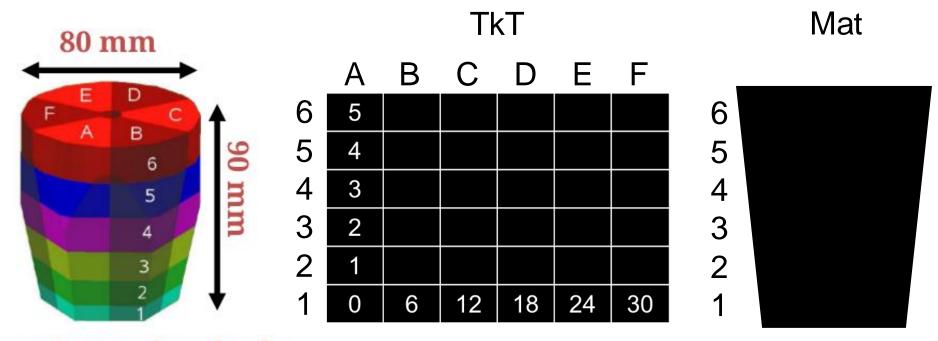
E.g. Prod__4-38-32768-UI__Ampli.spec is a file dumped by the Crystal Producer actor containing the amplitude spectra of segments and cores organized in 4 libraries of 38 spectra written in 32768 unsigned integer bins

- The viewers TkT and Mat can decode an interpret the format and length from the file name
- Other programs (e.g. RecalEnergy) can interpret the spectrum format and length from the file name but the user have to specify the number of spectra to act upon.

TkT

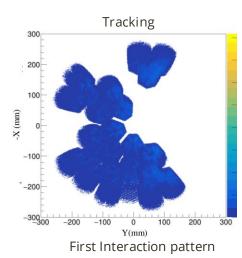

Channels correspondence after Replay

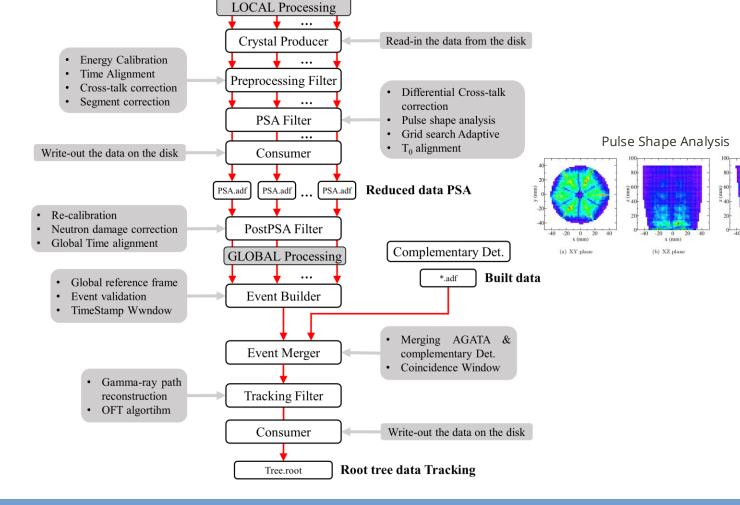
6x6 segmented cathode


TkT & Mat

Channels correspondence after Replay

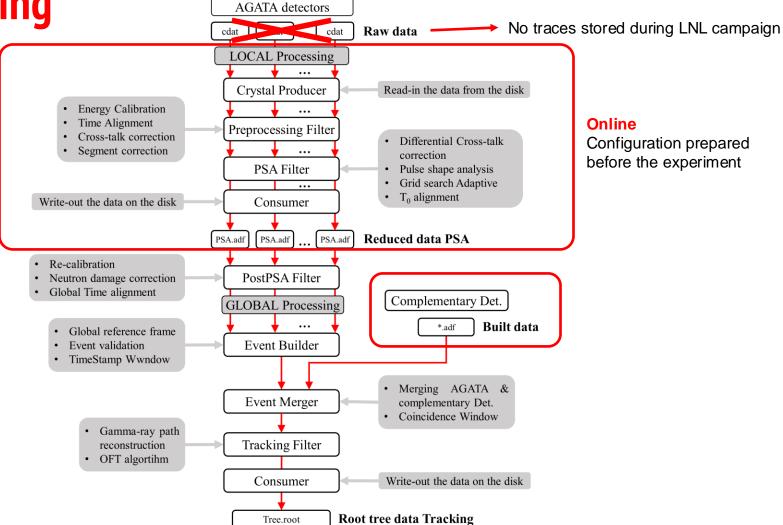
TkT & Mat


Channels correspondence after Replay



6x6 segmented cathode

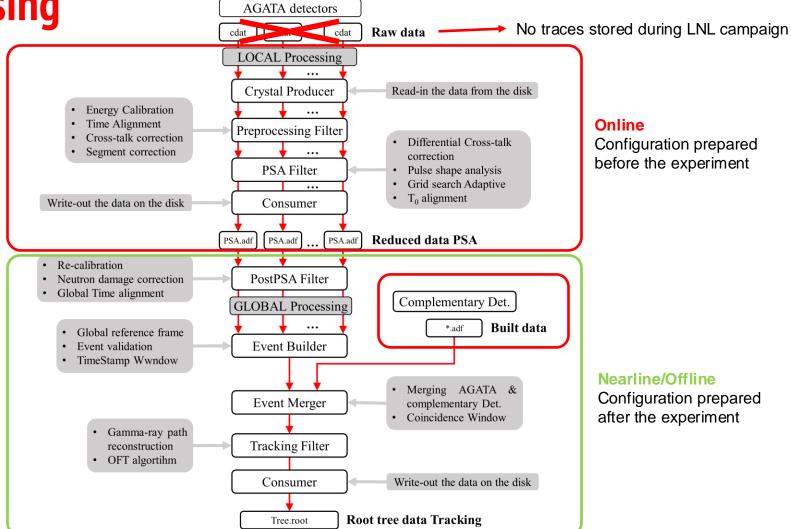
Data Processing Narval actors


(c) YZ plane

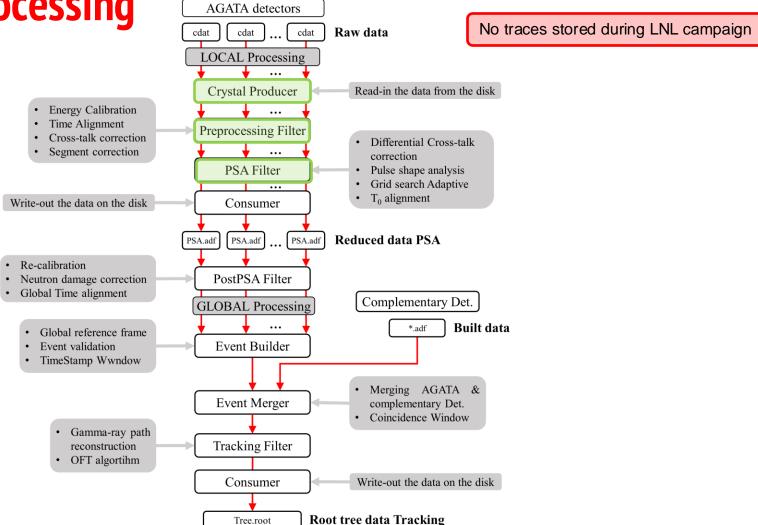
Raw data

cdat

AGATA detectors


Narval actors

Online


Configuration prepared before the experiment

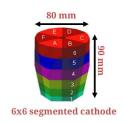
Narval actors

Narval actors

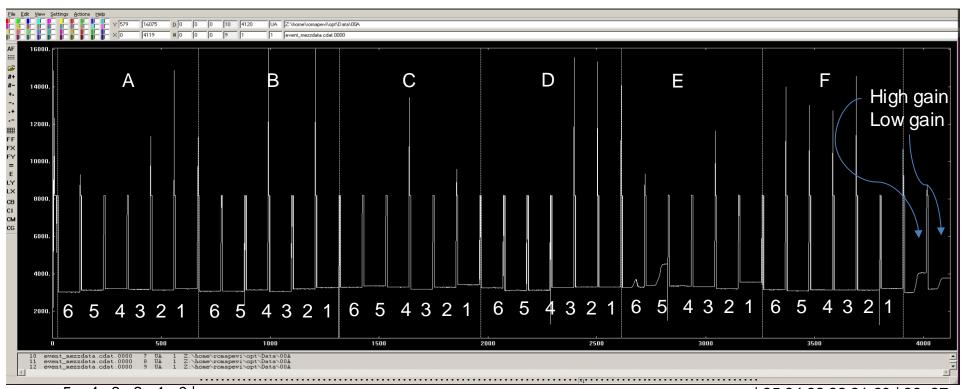
Operations up to the PSA need to be carefully prepared before the experiment and checked online

Local Level Processing Narval actors

AGATA detectors cdat Raw data cdat cdat **LOCAL Processing** Read-in the data from the disk Crystal Producer **Energy Calibration** Time Alignment Preprocessing Filter Cross-talk correction Differential Cross-talk Segment correction correction **PSA Filter** • Pulse shape analysis Grid search Adaptive • T₀ alignment Write-out the data on the disk Consumer PSA.adf PSA.adf Reduced data PSA PSA.adf Re-calibration Neutron damage correction PostPSA Filter Global Time alignment Complementary Det. **GLOBAL Processing Built data** *.adf Global reference frame Event validation Event Builder • TimeStamp Wwndow • Merging AGATA & Event Merger complementary Det. Coincidence Window Gamma-ray path Tracking Filter reconstruction OFT algortihm Write-out the data on the disk Consumer Root tree data Tracking Tree.root

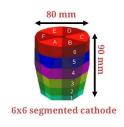

Crystal Producer

- Reads the data from:
 - The PCI express driver connected to the GGP electronics, online
 - Raw data files (event_mezzdata.cdat), offline
- Acts as a local event builder to assemble data coming from the GGP readout (or from the raw data file) according to mapping specified in:
 - CrystalProducerATCA.conf Files in Conf/00A e.g.
- Prepares data:crystal frames and send it to the data flow
- Configuration for this actor done by the local team
- Writes the original/raw data files (optional) and generate raw spectra for amplitudes and baselines:
 - event_mezzdata.cdat
 - event_energy.bdat
 - Prod__100-42-100-S__Traces.samp
 - Prod__38-16384-UI__Baseline.spec
 - Prod__4-38-32768-UI__Ampli.spec

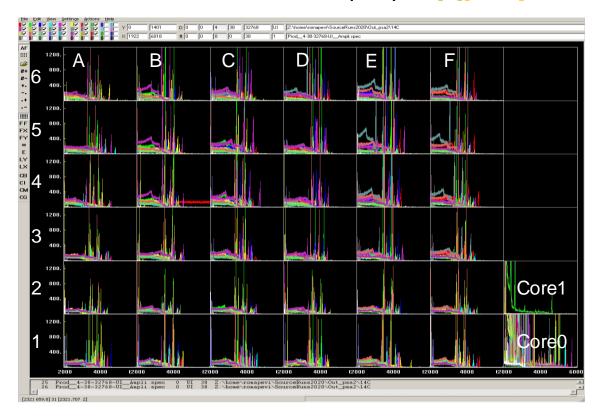

Files in Data(Out)/00A e.g.

Crystal Producer

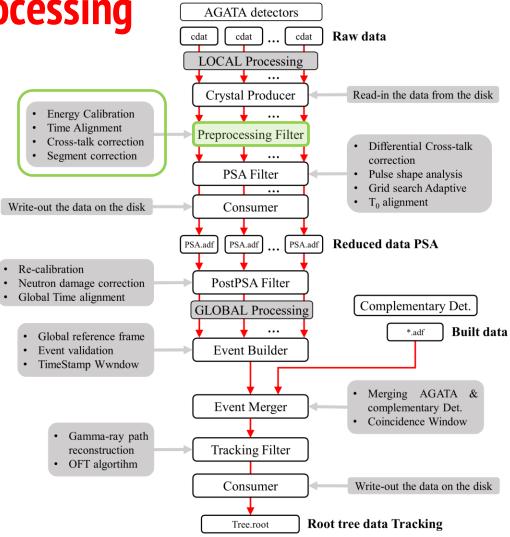
Raw data (traces)



event_mezzdata.cdat.0000 (length and format: 4120-UA)



Crystal Producer


Amplitude spectra

Prod__4-38-32768-UI__Ampli.spec [1][0-37]

Narval actors

Preprocessing Filter

- Performs:
 - Energy calibrations, Time alignment, Calculation of T0 from core: PreprocessingFilterPSA.conf
 - Cross talk corrections and unstable/dead segments corrections: xdir_1325-1340.cal, xinv_1325-1340.cal

Files in Conf/00A e.g

- After Preprocessing:
 - · energies are stored in units of keV
 - times are in units of samples (10 ns) (but time calibration parameters are in ns)
 - positions are given in mm, when they show up after the PSA
- Configuration for this actor done by the local team
- Generates various files:
 - Prep__2000-2000-UI__EsEs.matr
 - Prep__2-1000-1000-US__EeEtrCC.matr
 - Prep__2-10-16384-UI__Esum.spec
 - Prep__2-2000-1000-US__EcTc.matr
 - Prep__2-40-16384-UI__Ener.spec
 - Prep__36-36-UI__IsIs.matr
 - Prep__6-40-1000-UI__TT.spec

Files in Data(Out)/00A e.g.

Preprocessing Filter

Quality of the PSA is highly dependent on the good calibrations at the Preprocessing level!

- Check all segment and core signals detector by detector (36detectorsx38 signals=1368 spectra)
- In case of problematic signals, check producer level and cdat
- Once all the detector status are identified:
 - 1. Energy calibration
 - 2. Crosstalk correction
 - 3. Correction of missing/unstable segments
 - 4. Time alignment of the segments to core
 - 5. T0 alignment

1. Energy Calibration

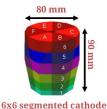
What is needed:

- Long 60Co run
- Spectra file : Data/{crystalID}/Prod__4-38-32768-UI__Ampli.spec
- Conf File: PreprocessingFilterPSA.conf
- Auxiliary files: recal.out
- Programs/scripts:

RecalEnergy: generate calibration coefficients

RecalEnergy -spe Data/{crystalID}/Prod__4-38-32768-UI__Ampli.spec -sub 38
-num 38 -gain 2 > {crystalID}/recal.out

# indx	#spec	#pks	#ok	rEnergy	FW05	FW01	Area	Position	Width	Ampli	WTML	WTMR	slope*gain	rChi2%
0	38	5	2	1332.97	4.415	12.823	714	3680.72	6.0	44	9.956	1.823	0.699782	48.88
1	39	3	2	1335.59	8.039	23.827	347	3711.46	9.6	11	11.935	1.823	0.723994	999.99
2	40	3	2	1332.30	8.950	26.884	514	3640.05	9.5	15	13.674	1.823	0.721332	10.58
3	41	3	2	1332.53	8.673	26.794	481	3686.95	7.0	14	19.428	1.823	0.718859	0.09
4	42	3	2	1332.81	6.896	20.926	252	3589.82	6.6	10	15.345	1.823	0.709819	20.18
5	43	2	2	1332.57	5.938	17.682	113	3696.65	6.8	5	12.501	1.823	0.701714	0.82
6	44	6	2	1332.38	5.013	14.396	763	3752.69	7.4	41	9.112	1.823	0.701904	4.08
7	45	4	2	1334.55	9.863	30.491	405	3825.30	8.2	10	19.599	1.823	0.685733	958.61
8	46	2	2	1328.15	18.390	34.136	479	3668.08	50.8	9	1.890	1.823	0.728990	999.99
9	47	2	2	1331.97	10.845	30.086	630	3836.94	19.3	15	7.157	1.823	0.703097	67.76
10	48	3	2	1334.70	8.340	25.498	424	3830.68	7.8	13	16.823	1.823	0.698238	999.99
11	49	2	2	1332.41	3.877	11.714	143	3831.25	4.1	9	14.578	1.823	0.711943	2.47
12	50	3	2	1333.21	4.817	14.359	601	3669.83	5.5	33	12.625	1.823	0.719321	111.38


colupdate.py: Add these coefficients to the 5th column of PreprocessingFilterPSA.conf

./colupdate.py {crystalID}/PreprocessingFilterPSA_old.conf {crystalID}/recal.out -c 4 13 -o {crystalID}/PreprocessingFilterPSA.conf

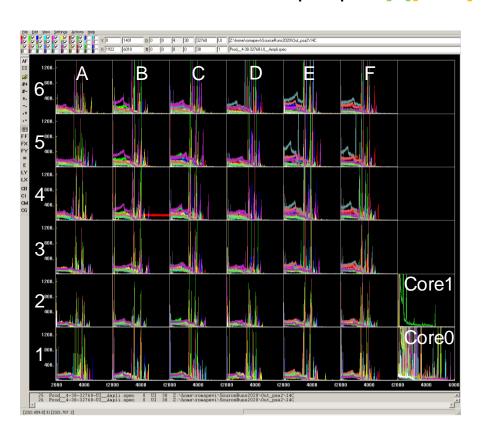
More details in AGATA LLP UsersGuide

Gain-only!

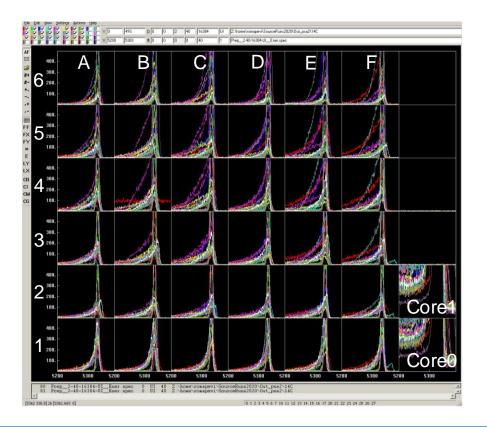
no offset coefficient needed because of the way the amplitude is generated in the preprocessing electronics.

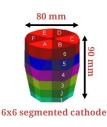
oxo segmenteu cathou

PreprocessingFilterPSA.conf


#segm/	core %d(id)	%f(tfall)	%f(trise)	%f(egain)	%f(emink)	%f(tmove)
segm	0	4800	600	0.699782	15	7.117
segm	1	4800	600	0.723994	15	8.970
segm	2	4800	600	0.721332	15	6.384
segm	3	4800	600	0.718859	15	5.505
segm	4	4800	600	0.709819	15	4.557
segm	5	4800	600	0.701714	15	4.868
segm	6	4800	600	0.701904	15	7.136
segm	7	4800	600	0.685733	15	6.002
segm	8	4800	600	0.728990	15	6.143
segm	9	4800	600	0.703097	15	6.255
segm	10	4800	600	0.698238	15	4.892
segm	11	4800	600	0.711943	15	5.229
segm	12	4800	600	0.719321	15	5.633
segm	13	4800	600	0.691592	15	3.298
segm	14	4800	600	0.719889	15	4.436
segm	15	4800	600	0.699936	15	4.799
segm	16	4800	600	0.724667	15	4.957
segm	17	4800	600	0.711515	15	5.091
segm	18	4800	600	0.730854	15	6.039
segm	19	4800	600	0.691051	15	5.029
segm	20	4800	600	0.706594	15	3.751
segm	21	4800	600	0.717657	15	3.090
segm	22	4800	600	0.715001	15	5.138
segm	23	4800	600	0.714159	15	4.982
segm	24	4800	600	0.716068	15	4.994
segm	25	4800	600	0.699619	15	5.645
segm	26	4800	600	0.708694	15	4.529
segm	27	4800	600	0.700469	15	3.817
segm	28	4800	600	0.726621	15	4.035
segm	29	4800	600	0.699717	15	4.644
segm	30	4800	600	0.700183	15	6.348
segm	31	4800	600	0.701122	15	6.565
segm	32	4800	600	0.720491	15	6.755
segm	33	4800	600	0.704997	15	4.734
segm	34	4800	600	0.713051	15	3.888
segm	35	4800	600	0.721396	15	4.347
core	0	4800	600	0.767652	0	21.000
core	1	4700	600	1.374411	0	21.000
tntf	-1				•	

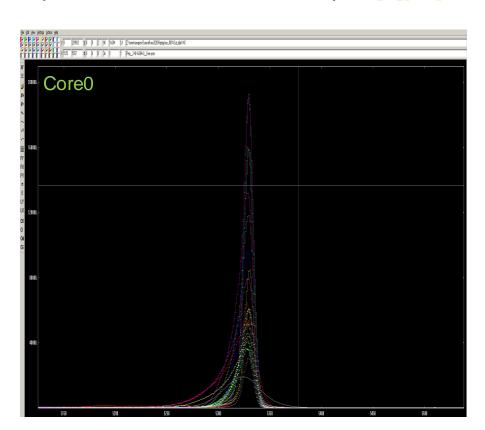
Verification with femul replay


Preprocessing Filter

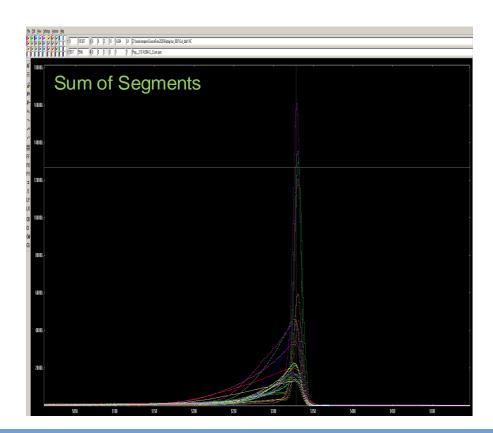

Preprocessing Filter: 1. Energy Calibration

Prod__4-38-32768-UI__Ampli.spec [1][0-37]

Prep__2-40-16384-UI__Ener.spec [0][0-37]


Verification with femul replay

80 mm F B B C B B C B B C B B C B B C B B C B B C B B C B B C B B C B


1. Energy Calibration

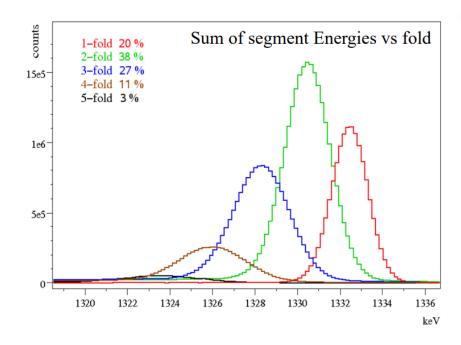
Preprocessing Filter

Prep__2-40-16384-UI__Ener.spec [0][36]

Prep__2-10-16384-UI__Esum.spec [1][0]

2. Crosstalk correction

80 mm


F A B C 90 mm

6x6 segmented cathode

Crosstalk **appears in any electrically segmented detector** due to the electronic coupling among channels.

- proportional: proportional to the net charge signal affects energy spectra with M>1
- differential: proportional to the derivative of that signal affects PSA

Creates strong energy shifts proportional to fold.

Corrections are made according to **a linear combination of the signal amplitudes of the other segments** using a 60Co source. With the software *xTalkSort*, the energies recorded in the segments are sorted according to the segment multiplicity (i.e. number of firing segments). From that, the shift from the nominal energy of the two transitions of the 60Co source is deduced to build the **cross-talk matrix of coefficients**.

2. Crosstalk correction

80 mm 6x6 segmented cathode

Prepare the ecalF1.cal file with the format:

36*36=1296 coefficients to correct capacitive coupling correlations between segments and core

```
0 %id 2 0 %CalibCoeff
0 0 2 0 0.301769
0 1 2 0 0.313686
...
0 36 2 0 0.484332
0 37 2 0 1.740927
```

Prepare the crosstalk files I with the proper format:

```
grep -v "^#" xdir_1325-1340.txt | grep -v "^
*36 " | cut -b15-102 --complement | tee
xdir_1325-1340.cal
```

%id	%id	%Crosstalk coeff
0	0	1.0000742
1	0	-0.0004010
2	0	-0.0016104
3	0	-0.0021275
4	0	-0.0021282
5	0	-0.0020902
6	0	-0.0019210
7	0	-0.0010441
8	0	-0.0017013
9	0	-0.0022207
10	0	-0.0022316
11	0	-0.0023822
35	35	1.0001122

What is needed:

- Long 60Co run
- Raw file : Data/{crystallD}/event_energy.bdat
- Conf File: xdir_1325-1340.cal, xinv_1325-1340.cal
- Auxiliary files: ecalF1.cal, xspe__36-37-16384-UI__cal.spe, xdir 1325-1340.txt
- Programs/scripts:

xTalkSort: Sort and analysis of Agata events without traces

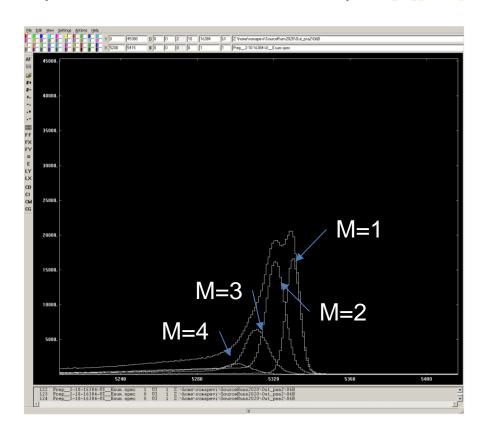
xTalkSort -ifile ../Data/{crystalID}/event_energy.bdat.0000 -ecalF1
ecalF1.cal -egain 5 -specXT -trigewin 1325 1340

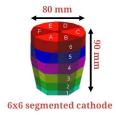
RecalEnergy: generate calibration coefficients

RecalEnergy -spe xspe__36-37-16384-UI__cal.spec -num 1332 -ener 1332.5 - gain 5 -offs 1000 -Xtalk 37 > xdir_1325-1340.txt

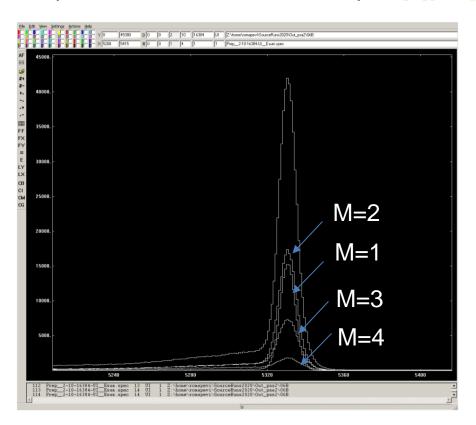
xTalkInvert: construct the file xinv_1325-1340.cal of cross talk

coefficients.

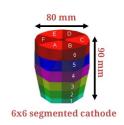

xTalkInvert -f xdir 1325-1340.cal

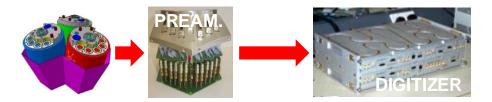

Replay to generate event.bdat files femul key in CrystalProducer: "WriteDataMask 8",

More details in AGATA LLP UsersGuide

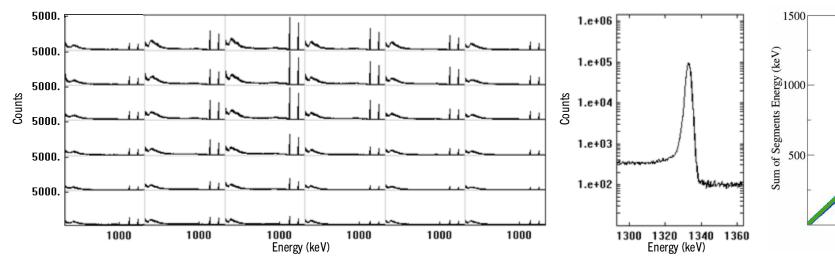

2. Crosstalk correction

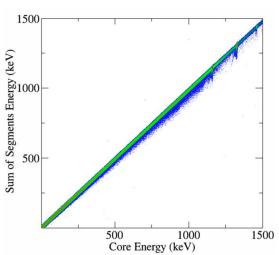
Prep__2-10-16384-UI__Esum.spec [0][0-4]

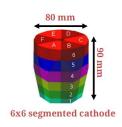


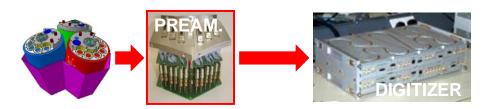


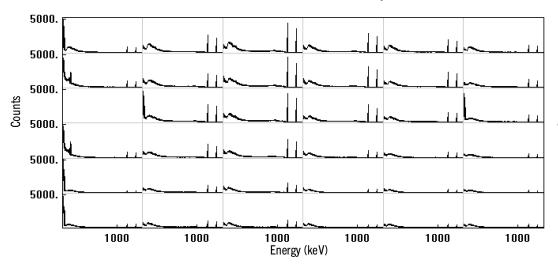
Prep__2-10-16384-UI__Esum.spec [1][0-4]

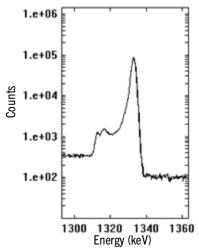


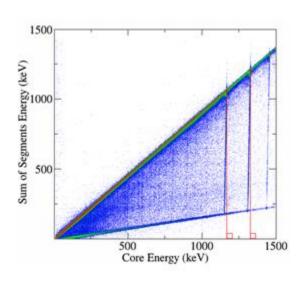

3. Dead/unstable segment correction




-- Example of Detector Ok--

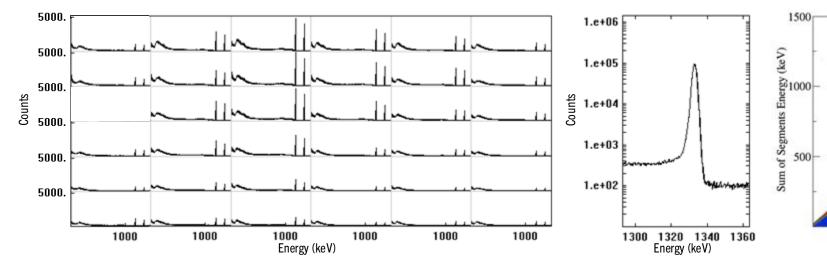

3. Dead/unstable segment correction

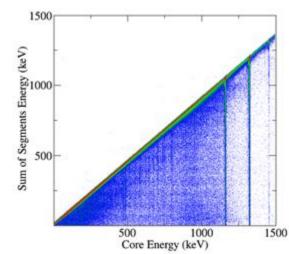




- Broken segment: the net charge is not properly collected but flows to the neighbouring segments
- Problem at the cold part of the preamplifier


--Example of Detector with a broken segment--


3. Dead/unstable segment correction



- Lost segment: the net charge is collected, but there is no information inside the data flow
- Problem after the cold part of the preamplifier

--Example of Detector with a lost segment--

80 mm F B D 0 M B C

3. Dead/unstable segment correction

 Correction in the crosstalk matrices considering that the sum of the energies released in the segments is equal to the energy in the core with the software xTalkSort.

$$\sum E_{seg} = E_{core}$$

- \circ Quantify the amount of missing energy of the **dead** segment. $E_{missing} = E_{core} \sum E_{seg}$
- For **broken** segments, also compensate the loss of energy in the core and generate a specific set of cross-talk correction coefficients capable of removing the ghost peaks from the affected neighbours.
- Segments with **unstable** gain could be transformed into (and treated as) "lost" segments by setting their energy calibration to zero.
- Possible only if all other segments in the detector work correctly

Preprocessing Filter: 3. Dead/unstable segment correction

What is needed:

- Long 60Co run
- Raw file : Data/{crystalID}/event_energy.bdat
- Conf file: xdir_1325-1340.cal, xinv_1325-1340.cal
- Auxiliary files: ecalF1.cal, CC-SG__50-1500-1500-US__ma.matr, xSG__36-36-100-1536-US__ij.matr
- Programs/scripts: xTalkSort, RecalEnergy, XTalkMake

Types of correction (femul keywords):

Dead segment correction: recovers E and T

Correction procedure

Broken: deadXsg, deadXcc

Lost: deadXsg, deadXcc=0

Broken

- Lost
- "Noisy"

Replay to generate event.bdat files femul key in CrystalProducer:

"WriteDataMask 8",

Replay:

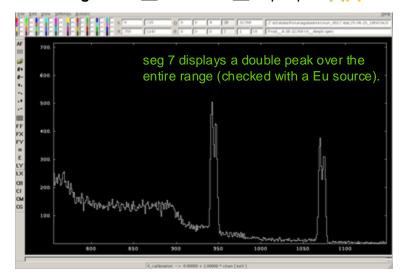
- add new cross talk files
- add in the gen_conf.py Prep:
- 'Det': ("DeadSegment Seg FactorS FactorC"),
- add in the gen_conf.py PSA:
- 'Det' : ("DeadSegment Seg "),
- set coeff seg to 0 in the PreprocessingFilterPsa.conf

Unstable segment correction: recovers E

Gain shift, etc

Correction procedure

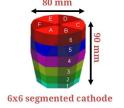
treatment as a "lost" segment: deadXsg

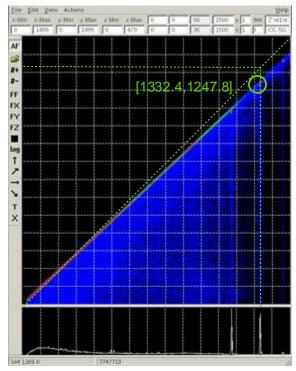

Replay:

- add new cross talk files
- add in the gen_conf.py Prep:
- 'Det' : ("UnstableSegment Seg FactorS"),
- keep de old coeff of calibration for the seg (different from 0) in the PreprocessingFilterPsa.conf

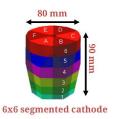
More details in AGATA LLP UsersGuide

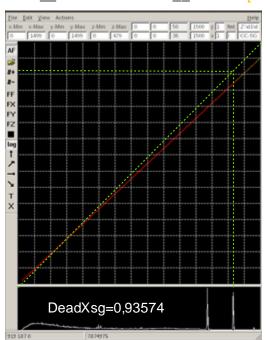

3. Unstable segment correction


00B **seg 7** Prod__4-38-32768__Ampli.spec [0][7]

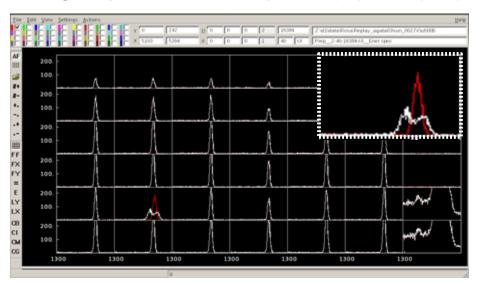

Replay to generate event.bdat files femul key in CrystalProducer: "WriteDataMask 8",

ecalF1.cal file seg 7 **coeff 1.242457** CC-SG__50-1500-1500-US__ma.matr [36]


ecalF1.cal file seg 7 **coeff 0.00000** to treat it as a lost segment correction CC-SG__50-1500-1500-US__ma.matr [36]


Slope of main diagonal ==> **DeadXsg=0,93574**No core loss ==> **DeadXcc=0**

3. Unstable segment correction

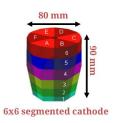

Verification with femul replay

CC-SG 50-1500-1500-US ma.matr [36]

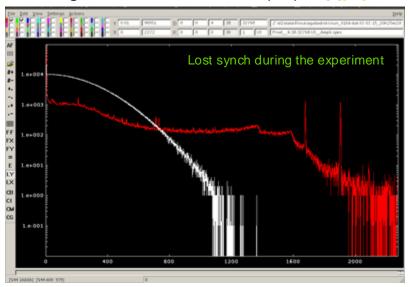
00B **seg 7** Prep__2-40-16384__Ener.spec [0][7] (red) & [1][7] (white)

xTalkSort: Generate new crosstalk matrix

xTalkSort -ifile event_energy.bdat -ecalF1 ecalF1.cal -egain 5 -deadSeg 7 0.93574 0 -matx1

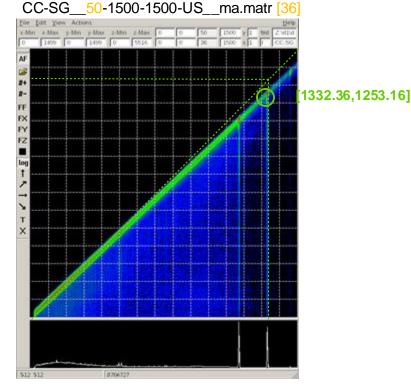

xTalkMake: Generate crosstalk coefficients:

xTalkMake -f xSG 36-36-100-1536-US ij.matr


Replay:

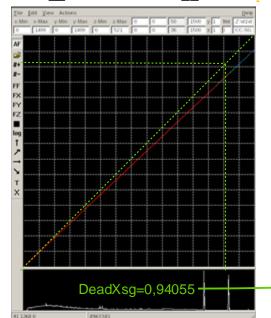
- add new cross talk files
- add in the gen_conf.py Prep:
- '00B' : ("UnstableSegment 7 0.93574"),
- keep de old coeff of calibration for the seg (different from 0) in the PreprocessingFilterPsa.conf

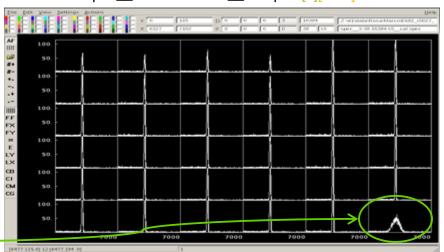
3. Dead segment correction: Lost segment



11B **seg 30** Prod__4-38-32768__Ampli.spec [0][30]

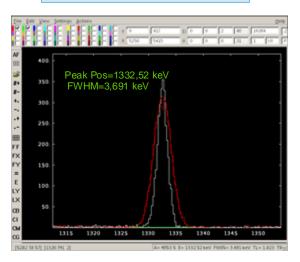
Replay to generate event.bdat files femul key in CrystalProducer: "WriteDataMask 8",


ecalF1.cal file seg 30 **coeff 0.0000** to treat it as a lost segment correction


Slope of main diagonal ==> **DeadXsg=0,94055** No core loss ==> **DeadXcc=0**

3. Dead segment correction: Lost segment

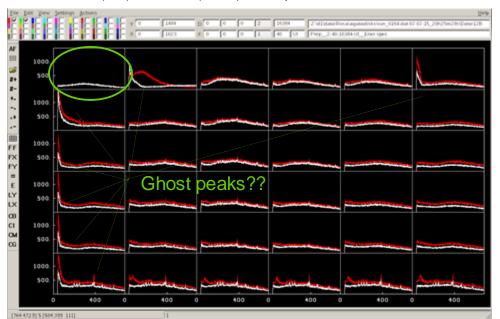
CC-SG 50-1500-1500-US ma.matr [36]



Verification with femul replay

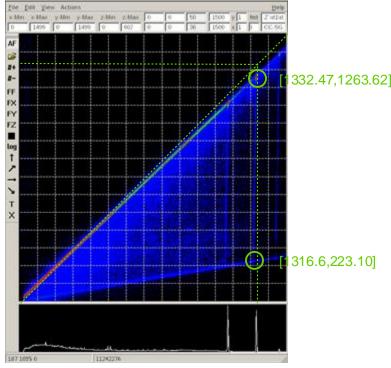
6x6 segmented cathode

11B **seg 30** Prep 2-40-16384 Ener.spec [0][30] (red) & [0][31] (white)

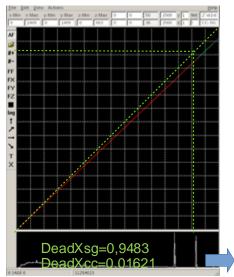

Replay:

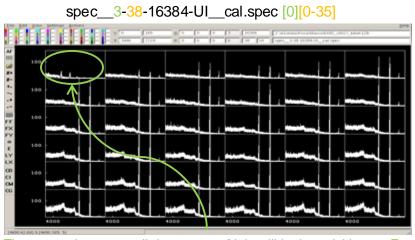
- add new cross talk files
- add in the gen_conf.py Prep: '11B' : ("DeadSegment 30 0.94055 0"),
- add in the gen_conf.py PSA: '11B' : ("DeadSegment
- set coeff seg 30 to 0 in the PreprocessingFilterPsa.conf

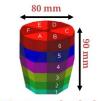
80 mm F A B C 90 mm 6x6 segmented cathode

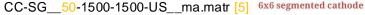

3. Dead segment correction: Broken segment

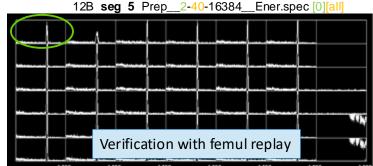
12B **seg 5** Prep__2-40-16384__Ener.spec [0][0-35] before (red) and after (white) the experiment


Replay to generate event.bdat files femul key in CrystalProducer: "WriteDataMask 8",


ecalF1.cal file seg 5 **coeff 0.00000** to treat it as a broken segment correction CC-SG 50-1500-1500-US ma.matr [36]


Slope of main diagonal ==> **DeadXsg=0,9483** No core loss ==> **DeadXcc=0,01621**


3. Dead segment correction: Broken segment CC-SG_50-1500-1500-US_ma.matr [36]



Replay:

- add new cross talk files
- add in the gen_conf.py Prep: '12B' : ("DeadSegment 5 0.9483 0.1621"),
- add in the gen_conf.py PSA: '12B' : ("DeadSegment 5"),
- set coeff seg 5 to 0 in the PreprocessingFilterPsa.conf

4. Time alignment segments to core

6x6 segmented cathode

What is needed:

- Any run
- Spectra file : Data/{crystallD}/Prep__6-40-1000-UI__TT.spec
- Conf File: PreprocessingFilterPSA.conf
- Auxiliary file: shift_TT.out
- Programs/scripts:

RecalEnergy: generate shift coefficients

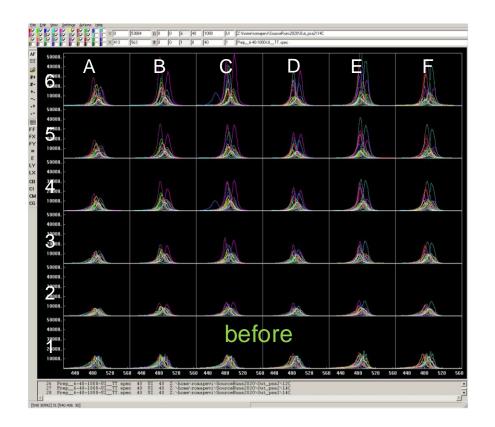
RecalEnergy -spe Data/{crystalID}/Prep__6-40-1000-UI__TT.spec -sub 40 -num 36
-T 500 > {crystalID}/shift TT.out

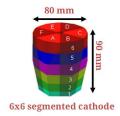
-T :	500 >	{ C	rys	tallD}/	sniit_	TT.Out							
# inc	dx #spec	#pk	s #o}	rEnergy	FW05	FW01	Area	Position	Width	Ampli	WTML	WTMR	shift*gain
#													
	0 40)	1 1	500.14	17.034	38.743	14865	500.14	16.1	731	2.993	1.823	7.117
	1 41	L	1 1	503.37	19.629	44.382	9422	503.37	19.5	400	2.382	2.171	8.970
	2 42	2	1 1	501.04	16.180	36.094	11042	501.04	15.8	574	2.604	1.955	6.384
	3 43	3	1 1	502.67	16.667	36.949	10726	502.67	16.4	543	2.558	1.958	5.505
	4 44	1	1 1	503.28	17.366	40.384	8202	503.28	17.1	388	2.484	2.231	4.557
	5 45	5	1 1	502.21	15.196	37.456	6171	502.21	14.7	323	2.641	2.473	4.868
	6 46	5	1 1	495.26	15.689	37.220	15836	495.26	14.1	830	3.439	1.823	7.136
	7 47	7	1 1	494.54	14.848	34.207	10077	494.54	14.3	562	2.771	2.005	6.002
	8 48	3	1 1	494.75	13.281	30.954	12390	494.75	12.8	768	2.781	2.055	6.143
	9 49)	1 1	502.06	18.771	43.533	12570	502.06	18.4	551	2.158	2.570	6.255
1	10 50)	1 1	498.45	16.276	38.653	9952	498.45	15.9	496	2.587	2.270	4.892
1	L1 51		1 1	495.62	14.016	34.301	7189	495.62	13.6	410	2.619	2.438	5.229
1	12 52	2	1 1	496.19	16.231	38.875	13783	496.19	14.4	695	3.558	1.823	5.633

colupdate.py: Add these coefficients to the 7th column of

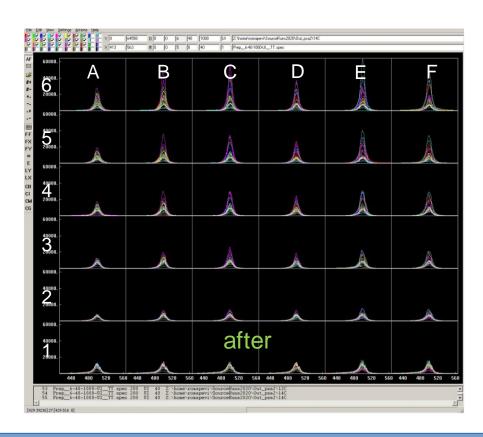
PreprocessingFilterPSA.conf

./colupdate.py {crystalID}/PreprocessingFilterPSA_old.conf
{crystalID}/recal.out -c 6 13 -o {crystalID}/PreprocessingFilterPSA.conf


More details in AGATA LLP UsersGuide

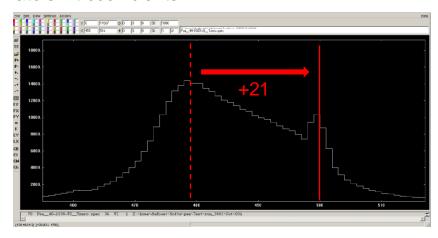

PreprocessingFilterPSA.conf

#segm/core	%d(id)	%f(tfall)	%f(trise)	%f(egain)	%f(emink)	%f(tmove)
segm	0	4800	600	0.699782	15	7.117
segm	1	4800	600	0.723994	15	8.970
segm	2	4800	600	0.721332	15	6.384
segm	3	4800	600	0.718859	15	5.505
segm	4	4800	600	0.709819	15	4.557
segm	5	4800	600	0.701714	15	4.868
segm	6	4800	600	0.701904	15	7.136
segm	7	4800	600	0.685733	15	6.002
segm	8	4800	600	0.728990	15	6.143
segm	9	4800	600	0.703097	15	6.255
segm	10	4800	600	0.698238	15	4.892
segm	11	4800	600	0.711943	15	5.229
segm	12	4800	600	0.719321	15	5.633
segm	13	4800	600	0.691592	15	3.298
segm	14	4800	600	0.719889	15	4.436
segm	15	4800	600	0.699936	15	4.799
segm	16	4800	600	0.724667	15	4.957
segm	17	4800	600	0.711515	15	5.091
segm	18	4800	600	0.730854	15	6.039
segm	19	4800	600	0.691051	15	5.029
segm	20	4800	600	0.706594	15	3.751
segm	21	4800	600	0.717657	15	3.090
segm	22	4800	600	0.715001	15	5.138
segm	23	4800	600	0.714159	15	4.982
segm	24	4800	600	0.716068	15	4.994
segm	25	4800	600	0.699619	15	5.645
segm	26	4800	600	0.708694	15	4.529
segm	27	4800	600	0.700469	15	3.817
segm	28	4800	600	0.726621	15	4.035
segm	29	4800	600	0.699717	15	4.644
segm	30	4800	600	0.700183	15	6.348
segm	31	4800	600	0.701122	15	6.565
segm	32	4800	600	0.720491	15	6.755
segm	33	4800	600	0.704997	15	4.734
segm	34	4800	600	0.713051	15	3.888
segm	35	4800	600	0.721396	15	4.347
core	0	4800	600	0.767652	0	21.000
core	1	4700	600	1.374411	0	21.000
tntf	-1					


4. Time alignment segments to core

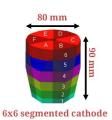
Prep__6-40-1000-UI__TT.spec [1][0-35]

Prep__6-40-1000-UI__TT.spec [5][0-35]



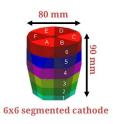
5. T0 alignment

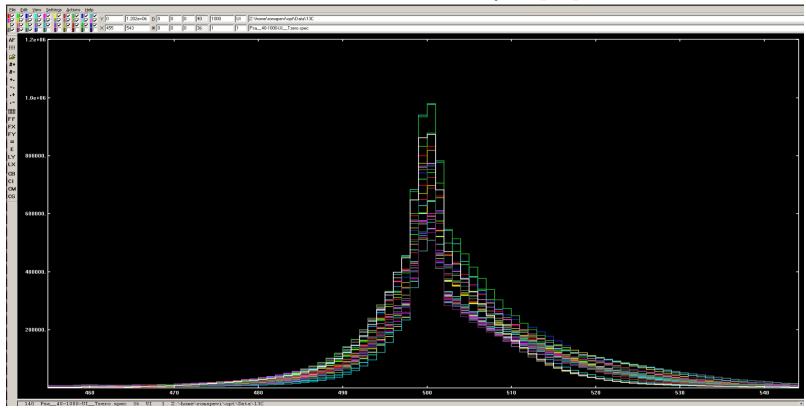
What is needed:


- Any run
- Spectra file : Data/{crystalID}/Psa__40-1000-UI__Tzero.spec
- Conf File: PreprocessingFilterPSA.conf
- Auxiliary file: shift_TT.out
- Programs/scripts:

TkT: estimate shift coefficients

Add these coefficients to the 7th column of PreprocessingFilterPSA.conf last 2 rows


More details in AGATA LLP UsersGuide


PreprocessingFilterPSA.conf

#segm/core %d(id) %f(trial) %f(trise) %f(emink) %f(tmove) segm 0 4800 600 0.699782 15 7.117 segm 1 4800 600 0.723994 15 8.970 segm 2 4800 600 0.721332 15 6.384 segm 3 4800 600 0.718859 15 5.505 segm 4 4800 600 0.701714 15 4.868 segm 6 4800 600 0.701704 15 7.136 segm 6 4800 600 0.685733 15 6.002 segm 9 4800 600 0.723990 15 6.143 segm 10 4800 600 0.730397 15 6.255 segm 11 4800 600 0.711943 15 5.229 segm 12 4800 600 0.719821 15			-	_			
segm 1 4800 600 0.723994 15 8.970 segm 2 4800 600 0.721332 15 6.384 segm 3 4800 600 0.718859 15 5.505 segm 4 4800 600 0.701714 15 4.868 segm 6 4800 600 0.701904 15 7.136 segm 6 4800 600 0.701904 15 7.136 segm 7 4800 600 0.701904 15 7.136 segm 9 4800 600 0.728990 15 6.143 segm 10 4800 600 0.730397 15 6.255 segm 10 4800 600 0.719321 15 5.229 segm 11 4800 600 0.719321 15 5.633 segm 13 4800 600 0.719889 15 <	#segm/core						
segm 2 4800 600 0.721332 15 6.384 segm 3 4800 600 0.718859 15 5.505 segm 4 4800 600 0.709819 15 4.557 segm 5 4800 600 0.701714 15 4.868 segm 6 4800 600 0.701904 15 7.136 segm 7 4800 600 0.728990 15 6.002 segm 9 4800 600 0.728990 15 6.143 segm 9 4800 600 0.73899 15 6.255 segm 10 4800 600 0.719321 15 5.229 segm 11 4800 600 0.711943 15 5.229 segm 12 4800 600 0.719321 15 5.633 segm 12 4800 600 0.719321 15 <t< td=""><td>segm</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	segm						
segm 3 4800 600 0.718859 15 5.505 segm 4 4800 600 0.709819 15 4.557 segm 5 4800 600 0.701714 15 4.868 segm 6 4800 600 0.701904 15 7.136 segm 7 4800 600 0.72890 15 6.002 segm 8 4800 600 0.72890 15 6.143 segm 9 4800 600 0.73097 15 6.255 segm 10 4800 600 0.703097 15 6.255 segm 10 4800 600 0.719321 15 5.229 segm 12 4800 600 0.719321 15 5.633 segm 13 4800 600 0.719321 15 5.633 segm 14 4800 600 0.719321 15 <th< td=""><td>segm</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	segm						
segm 4 4800 600 0.709819 15 4.557 segm 5 4800 600 0.701714 15 4.868 segm 6 4800 600 0.701904 15 7.136 segm 7 4800 600 0.701904 15 7.136 segm 8 4800 600 0.701904 15 7.136 segm 9 4800 600 0.728990 15 6.143 segm 9 4800 600 0.703097 15 6.255 segm 10 4800 600 0.711943 15 5.229 segm 12 4800 600 0.7119321 15 5.633 segm 13 4800 600 0.719321 15 5.633 segm 14 4800 600 0.719889 15 4.436 segm 15 4800 600 0.724667 15	segm						
segm 5 4800 600 0.701714 15 4.868 segm 6 4800 600 0.701904 15 7.136 segm 7 4800 600 0.701904 15 7.136 segm 7 4800 600 0.768733 15 6.002 segm 9 4800 600 0.728990 15 6.143 segm 9 4800 600 0.703097 15 6.255 segm 10 4800 600 0.698238 15 4.892 segm 11 4800 600 0.711943 15 5.633 segm 12 4800 600 0.719321 15 5.633 segm 13 4800 600 0.719889 15 4.436 segm 15 4800 600 0.724667 15 4.957 segm 16 4800 600 0.724667 15	segm	-					
segm 6 4800 600 0.701904 15 7.136 segm 7 4800 600 0.685733 15 6.002 segm 8 4800 600 0.728990 15 6.143 segm 9 4800 600 0.73097 15 6.255 segm 10 4800 600 0.73097 15 6.255 segm 10 4800 600 0.711943 15 5.229 segm 12 4800 600 0.719321 15 5.239 segm 13 4800 600 0.719321 15 5.633 segm 14 4800 600 0.719321 15 5.633 segm 15 4800 600 0.719889 15 4.436 segm 15 4800 600 0.724667 15 4.957 segm 17 4800 600 0.730854 15	segm						
segm 7 4800 600 0.685733 15 6.002 segm 8 4800 600 0.728990 15 6.143 segm 9 4800 600 0.73097 15 6.255 segm 10 4800 600 0.698238 15 4.892 segm 11 4800 600 0.711943 15 5.229 segm 12 4800 600 0.7119321 15 5.633 segm 13 4800 600 0.719889 15 4.928 segm 14 4800 600 0.719889 15 4.936 segm 15 4800 600 0.724667 15 4.799 segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.730854 15 6.039 segm 19 4800 600 0.769151 15	segm						
segm 8 4800 600 0.728990 15 6.143 segm 9 4800 600 0.703097 15 6.255 segm 10 4800 600 0.793097 15 6.255 segm 11 4800 600 0.711943 15 5.229 segm 12 4800 600 0.7119321 15 5.633 segm 13 4800 600 0.691592 15 3.298 segm 14 4800 600 0.719889 15 4.36 segm 15 4800 600 0.724667 15 4.957 segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.730854 15 6.039 segm 19 4800 600 0.706594 15 3.751 segm 20 4800 600 0.717657 15	segm						
segm 9 4800 600 0.703097 15 6.255 segm 10 4800 600 0.698238 15 4.892 segm 11 4800 600 0.711943 15 5.229 segm 12 4800 600 0.7119321 15 5.633 segm 13 4800 600 0.719321 15 5.633 segm 14 4800 600 0.719889 15 4.436 segm 15 4800 600 0.724667 15 4.799 segm 16 4800 600 0.724667 15 4.957 segm 16 4800 600 0.730854 15 6.039 segm 18 4800 600 0.730854 15 6.039 segm 20 4800 600 0.706594 15 3.751 segm 21 4800 600 0.717501 15	segm						
segm 10 4800 600 0.698238 15 4.892 segm 11 4800 600 0.711943 15 5.229 segm 12 4800 600 0.719321 15 5.633 segm 13 4800 600 0.691592 15 3.298 segm 14 4800 600 0.719889 15 4.36 segm 15 4800 600 0.724667 15 4.799 segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.730854 15 5.091 segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.730854 15 5.029 segm 20 4800 600 0.706594 15 3.751 segm 21 4800 600 0.714050 15	segm		4800		0.728990		6.143
segm 11 4800 600 0.711943 15 5.229 segm 12 4800 600 0.719321 15 5.633 segm 13 4800 600 0.691592 15 3.298 segm 14 4800 600 0.719889 15 4.436 segm 15 4800 600 0.724667 15 4.957 segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.724667 15 4.957 segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.730854 15 6.039 segm 20 4800 600 0.730854 15 5.029 segm 21 4800 600 0.717657 15 3.090 segm 21 4800 600 0.714159 15	segm	9	4800	600	0.703097	15	6.255
segm 12 4800 600 0.719321 15 5.633 segm 13 4800 600 0.691592 15 3.298 segm 14 4800 600 0.719889 15 4.36 segm 15 4800 600 0.724667 15 4.799 segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.724667 15 4.957 segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.733854 15 6.039 segm 20 4800 600 0.76594 15 3.751 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.714059 15 4.982 segm 23 4800 600 0.714059 15	segm	10	4800	600	0.698238	15	4.892
segm 13 4800 600 0.691592 15 3.298 segm 14 4800 600 0.719889 15 4.436 segm 15 4800 600 0.699936 15 4.799 segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.730854 15 5.091 segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.706594 15 3.751 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.714059 15 4.982 segm 24 4800 600 0.714059 15 4.982 segm 24 4800 600 0.716068 15	segm	11	4800	600	0.711943	15	5.229
segm 14 4800 600 0.719889 15 4.436 segm 15 4800 600 0.699936 15 4.799 segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.711515 15 5.091 segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.730854 15 5.029 segm 20 4800 600 0.706594 15 3.751 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.714159 15 4.982 segm 24 4800 600 0.714068 15 4.994 segm 25 4800 600 0.708694 15	segm	12	4800	600	0.719321	15	5.633
segm 15 4800 600 0.699936 15 4.799 segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.721651 15 5.091 segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.76594 15 3.751 segm 20 4800 600 0.717657 15 3.090 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.714059 15 4.982 segm 24 4800 600 0.716068 15 4.994 segm 25 4800 600 0.769619 15 5.645 segm 26 4800 600 0.70069 15	segm	13	4800	600	0.691592	15	3.298
segm 16 4800 600 0.724667 15 4.957 segm 17 4800 600 0.711515 15 5.091 segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.730854 15 5.029 segm 29 4800 600 0.706594 15 3.751 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.714159 15 5.138 segm 23 4800 600 0.716068 15 4.992 segm 24 4800 600 0.716068 15 4.994 segm 25 4800 600 0.796691 15 5.645 segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.700469 15	segm	14	4800	600	0.719889	15	4.436
segm 17 4800 600 0.711515 15 5.091 segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.691051 15 5.029 segm 20 4800 600 0.706594 15 3.751 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.714068 15 4.982 segm 24 4800 600 0.716068 15 4.982 segm 25 4800 600 0.716068 15 4.994 segm 25 4800 600 0.708694 15 4.529 segm 26 4800 600 0.704699 15 3.817 segm 28 4800 600 0.7226621 15	segm	15	4800	600	0.699936	15	4.799
segm 18 4800 600 0.730854 15 6.039 segm 19 4800 600 0.691051 15 5.029 segm 20 4800 600 0.706594 15 3.751 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.716068 15 4.982 segm 24 4800 600 0.716068 15 4.982 segm 25 4800 600 0.796961 15 5.645 segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.726621 15 4.035 segm 28 4800 600 0.726621 15 4.644 segm 30 4800 600 0.700183 15	segm	16	4800	600	0.724667	15	4.957
segm 19 4800 600 0.691051 15 5.029 segm 20 4800 600 0.706594 15 3.751 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.714159 15 4.982 segm 24 4800 600 0.716068 15 4.994 segm 25 4800 600 0.796949 15 5.645 segm 26 4800 600 0.700469 15 4.529 segm 27 4800 600 0.726621 15 4.035 segm 29 4800 600 0.726621 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.770182 15	segm	17	4800	600	0.711515	15	5.091
segm 20 4800 600 0.706594 15 3.751 segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.714159 15 4.982 segm 24 4800 600 0.716068 15 4.994 segm 25 4800 600 0.769619 15 5.645 segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.700469 15 3.817 segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.726621 15 4.644 segm 30 4800 600 0.701183 15 6.348 segm 31 4800 600 0.720491 15	segm	18	4800	600	0.730854	15	6.039
segm 21 4800 600 0.717657 15 3.090 segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.714159 15 4.982 segm 24 4800 600 0.716068 15 4.994 segm 25 4800 600 0.699619 15 5.645 segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.700469 15 3.817 segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.790183 15 6.348 segm 30 4800 600 0.701183 15 6.348 segm 31 4800 600 0.720491 15 6.755 segm 32 4800 600 0.720491 15	segm	19	4800	600	0.691051	15	5.029
segm 22 4800 600 0.715001 15 5.138 segm 23 4800 600 0.714159 15 4.982 segm 24 4800 600 0.716068 15 4.994 segm 25 4800 600 0.699619 15 5.645 segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.720469 15 3.817 segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.7699717 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.7701122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15	segm	20	4800	600	0.706594	15	3.751
segm 23 4800 600 0.714159 15 4.982 segm 24 4800 600 0.716068 15 4.994 segm 25 4800 600 0.699619 15 5.645 segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.700469 15 3.817 segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.699717 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.720191 15 6.755 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.720491 15 4.734 segm 34 4800 600 0.721396 15	segm	21	4800	600	0.717657	15	3.090
segm 24 4800 600 0.716068 15 4.994 segm 25 4800 600 0.699619 15 5.645 segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.700469 15 3.817 segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.699717 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.701122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.7713051 15 3.888 segm 35 4800 600 0.7721396 15	segm	22	4800	600	0.715001	15	5.138
segm 25 4800 600 0.699619 15 5.645 segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.700469 15 3.817 segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.699717 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.721122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.7721396 15 4.347 core 0 4800 600 0.767652 0	segm	23	4800	600	0.714159	15	4.982
segm 26 4800 600 0.708694 15 4.529 segm 27 4800 600 0.700469 15 3.817 segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.699717 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.701122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.70497 15 4.334 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0	segm	24	4800	600	0.716068	15	4.994
segm 27 4800 600 0.700469 15 3.817 segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.699717 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.701122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	segm	25	4800	600	0.699619	15	5.645
segm 28 4800 600 0.726621 15 4.035 segm 29 4800 600 0.699717 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.701122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	segm	26	4800	600	0.708694	15	4.529
segm 29 4800 600 0.699717 15 4.644 segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.701122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	segm	27	4800	600	0.700469	15	3.817
segm 30 4800 600 0.700183 15 6.348 segm 31 4800 600 0.701122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	segm	28	4800	600	0.726621	15	4.035
segm 31 4800 600 0.701122 15 6.565 segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	segm	29	4800	600	0.699717	15	4.644
segm 32 4800 600 0.720491 15 6.755 segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	segm	30	4800	600	0.700183	15	6.348
segm 33 4800 600 0.704997 15 4.734 segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	segm	31	4800	600	0.701122	15	6.565
segm 34 4800 600 0.713051 15 3.888 segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	segm	32	4800	600	0.720491	15	6.755
segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	seqm	33	4800	600	0.704997	15	4.734
segm 35 4800 600 0.721396 15 4.347 core 0 4800 600 0.767652 0 21.000 core 1 4700 600 1.374411 0 21.000	~	34	4800	600	0.713051	15	3.888
core 1 4700 600 1.374411 0 21.000	-	35	4800	600	0.721396	15	4.347
	core	0	4800	600	0.767652	0	21.000
tntf -1	core	1	4700	600	1.374411	0	21.000
	tntf	-1					

5. To alignment

Psa__40-1000-UI__Tzero.spec [36]

Local Level ProcessingNarval actors

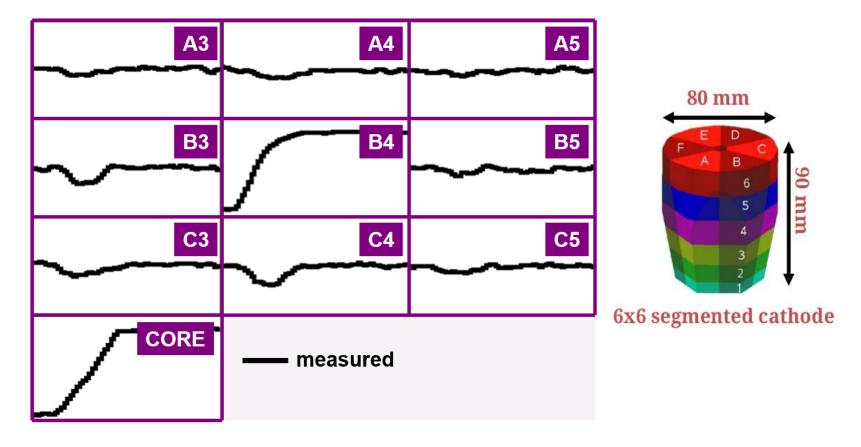
AGATA detectors cdat Raw data cdat cdat **LOCAL Processing** Read-in the data from the disk Crystal Producer **Energy Calibration** Time Alignment Preprocessing Filter Cross-talk correction Differential Cross-talk Segment correction correction **PSA Filter** Pulse shape analysis Grid search Adaptive • T₀ alignment Write-out the data on the disk Consumer PSA.adf PSA.adf Reduced data PSA PSA.adf Re-calibration Neutron damage correction PostPSA Filter Global Time alignment Complementary Det. **GLOBAL Processing Built data** *.adf Global reference frame Event validation Event Builder TimeStamp Wwndow • Merging AGATA & Event Merger complementary Det. Coincidence Window Gamma-ray path **Tracking Filter** reconstruction OFT algortihm Write-out the data on the disk Consumer

Tree.root

Root tree data Tracking

Local Level Processing

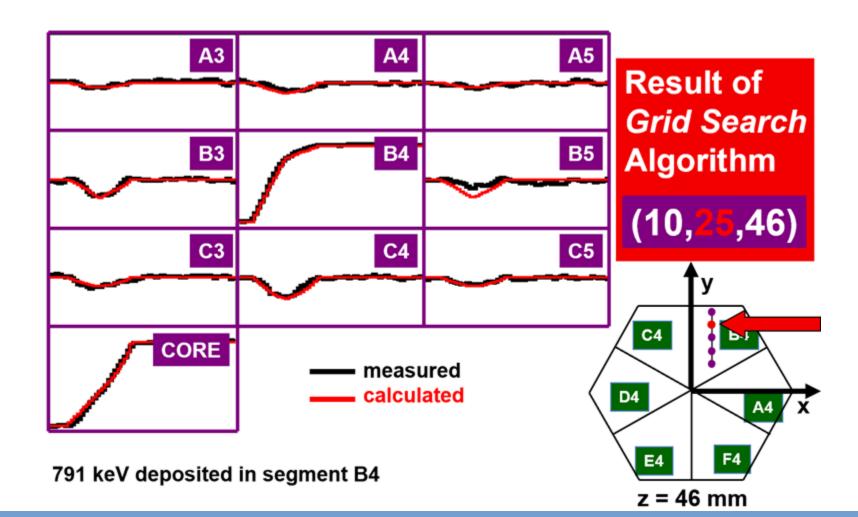
PSA Filter

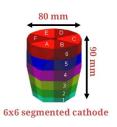

All up to this points cannot be redone after the experiment (!)

- Reads the simulated basis (ADL)
- Applies the preamp response function to the simulated traces
- Performs the signal decomposition:
 - Implemented algorithm: Grid Search
 - As a full grid search
 - As a coarse/fine search (AGS)
- Reduces size of data by factor ~80
- Provides the parameters for the correction of neutron damage
- Takes ~95 % of total CPU time
- Is the critical point for the processing speed of online and offline analyses
- Configuration for this actor done by the local team
- Generates various files:
- Psa__2-38-37-60-F__AverSingles.samp
- Psa 3-100-100-100-US XYZ.matr
- Psa 37-37-60-F Base.aver
- Psa__37-37-60-F__Base.aver_raw
- Psa__40-1000-UI__RedChi.spec
- Psa__40-1000-UI__Tzero.spec
- Psa__40-100-UI__Stat.spec
- Psa__40-16384-UI__Ener.spec
- Psa__524288-F__DistanceMetric.spec

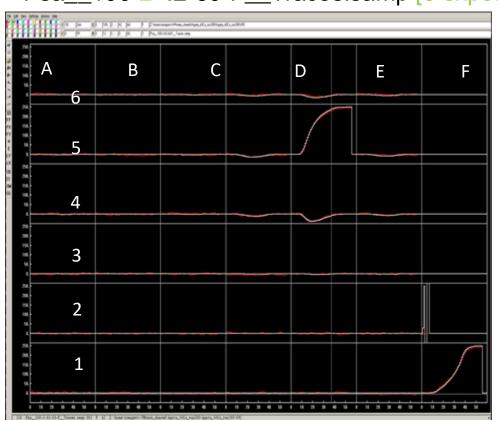
Files in Data(Out)/00A e.g.

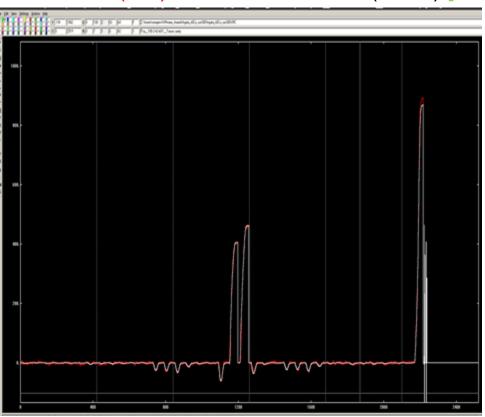
Local Level Processing


PSA Filter

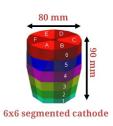

791 keV deposited in segment B4

Local Level Processing

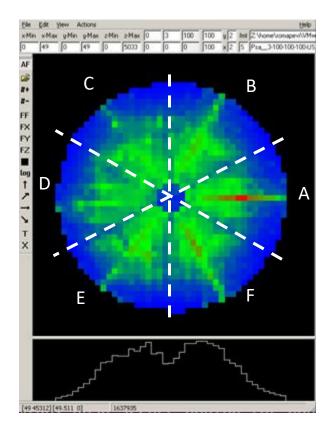

PSA Filter



Traces

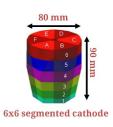


Psa__100-2-42-60-F__Traces.samp [0 experimental trace (red) ,1 calculated trace(white)]

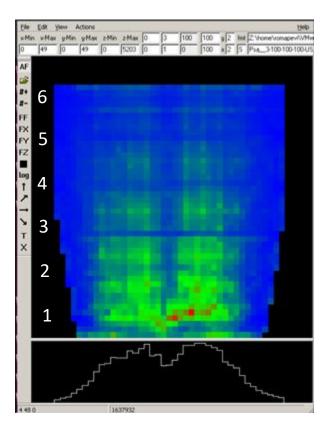


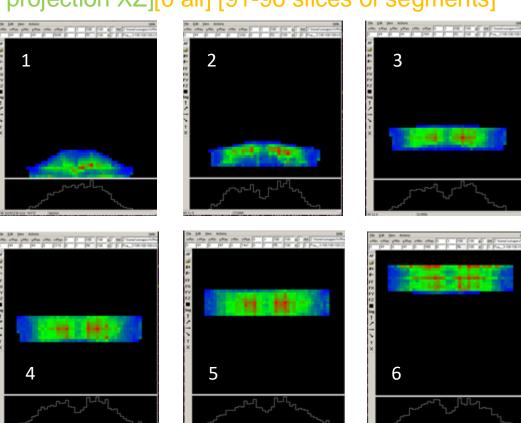


Hit pattern

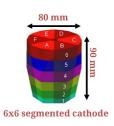


Psa__3-100-100-100-US__XYZ.matr [0 projection XY][0 all] [91-96 slices of segments]

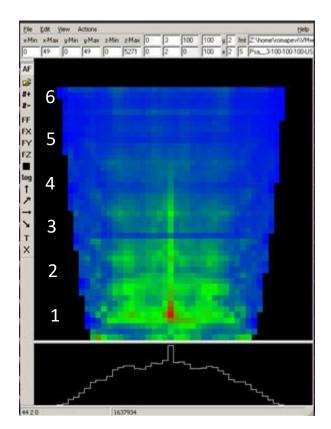


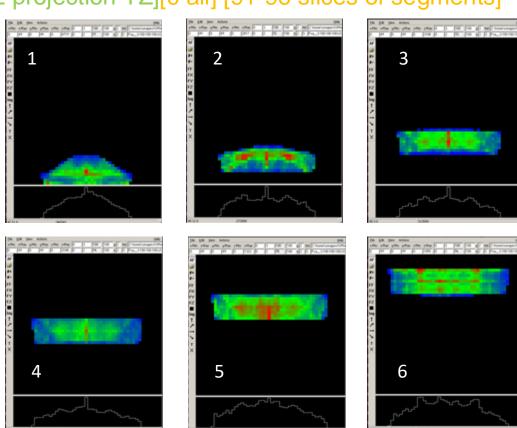


Hit pattern

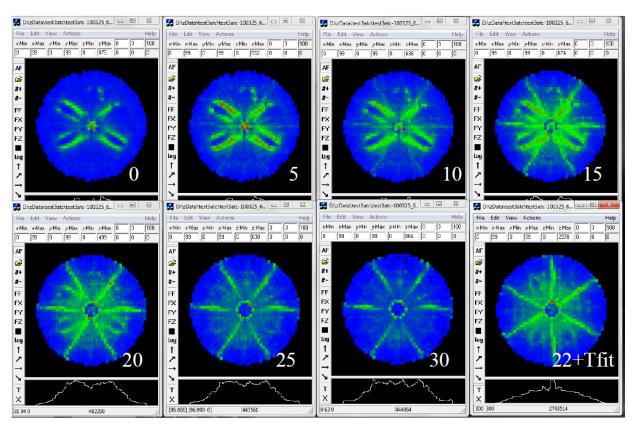


Psa__3-100-100-100-US__XYZ.matr [1 projection XZ][0 all] [91-96 slices of segments]





Hit pattern



Psa__3-100-100-100-US__XYZ.matr [2 projection YZ][0 all] [91-96 slices of segments]

T0 effect

Effect of time position of the experimental trace

Thank you! **AGATA Analysis Workshop 2025 Preprocessing Calibration**

R.M. Pérez-Vidal

14/01/2025, Lyon

