
AGATA ancillaries analysis:
rebuilding events and
selector optimization

Lecturer: Elia Pilotto
On behalf of the AGATA collaboration

•Part 1: Reading raw data and building the
ancillary events
•Part 2 : Using the optimization of the selector

and other features

• This will be a bit technical, but it is important to understand what
is happening ”under the hood” do debug issues and understand
how the data flow works

• We need to produce an adf file to feed to femul to produce the
root trees

• The EventMerger of femul requires built events (with composite
frames), so we need to produce

Rebuilding events

Introduction

Built AGATA events

Ancillary 1
Raw data

Ancillary 2
Raw data

Prisma
Raw data

Built Ancillary events
(.adf format)

Prisma data
(.adf format)

Root files
Analyzed Root

files

00A 01B 02C

Femul

PrismaFilters

ReadCaenRaw
(selector)

Femul

Selector

Prisma
raw root

files

Selector

Prisma
analyzed
root files

Handling the RAW data

• The DAQ that runs online (xDaq) consists of some actors that
handle different tasks.

• Each actor can write data to disk

Readout
unit

RU_*

Local filter
LF_*

Builder
unit

BU_*.adf

Reads the binary
from the
digitizers

Filter for things
like psa

Event builder

• Reads the binary output from the CAEN digitizers
• There are two different firmware types: PHA and PSD
• There are also two different firmware versions which we will call 1 and 2

• Builds the time coincidences with a simple event builder, we can
set the time window

• Can also include and build PRISMA events both for analyzed and
raw data

ReadCaenRaw: how to run

• The ReadCaenRaw is contained in the agataselector and can be compiled
running cmake -DBUILD_SCRIPTS=On .

• You will find the executable in your build folder under Scripts/AncMerging/

Configuration file: PRISMA-LABR conf

• window [time window width in
nanoseconds, usually around 500]

• board [board number] [firmware
version: 1 or 2] [number of channels:
normally 16 or 64] [firmware type:
PSD or PHA] [nanoseconds per
timestamp] [nanoseconds per
sample] [detector name]

• tsoffset [board number][channel]
[value of offset in timestamps
(multiples of 10 ns)]

• minfold: [board number] [minimum
fold of a board to write an event in the
output]

Configuration file: SPIDER-DANTE-LABR conf

• window [time window width in
nanoseconds, usually around 500]

• board [board number] [firmware
version: 1 or 2] [number of channels:
normally 16 or 64] [firmware type:
PSD or PHA] [nanoseconds per
timestamp] [nanoseconds per
sample] [detector name]

• tsoffset [board number][channel]
[value of offset in timestamps
(multiples of 10 ns)]

• minfold: [board number] [minimum
fold of a board to write an event in the
output]

ListFrames: Labr only

Gamma-gamma
coincidence of the labr
(fa0201a5)

The eventnumber slot in the adf headers for the ancillaries
is misleading. Since it is not used, to save space, it has
been exploited to save the board and channel info of the
hit. To extract board and channel can be done with a bit
mask and bit shift:

Composite frame
Labr hit

Minfold 2

Setting minfold 2 for the
LABR board, we only store
gamma-gamma
coincidences, this can be
useful to reduce the data or
to find coincidence peaks

First timestamp of the
ancillaries

Time difference with
respect to the previous
frame

Prisma-Labr coincidence
• We are now interested in merging the PRISMA data with the other ancillaries
• This is useful for DANTE and the LABR so far
• We just need to use the - -prisma option:

./ReadCaenRaw - - input [files] - - prisma [files]
• You have several options:

• Include only the raw PRISMA data (if you are doing the analysis with the selector) → fa0201a0
• Include only the analyzed PRISMA data (if you have already done the analysis with the prisma filters) → fa0201a1
• Include both of them if you want to keep all options. Note that this will double the amount of space on disk

used by prisma

Prisma-labr time
coincidence

Example of a DANTE-DANTE coincidence
• A “perfect” DANTE event should have X, Y and T. In this specific case with two dante detectors at forward

angles, an event can be a DANTE-DANTE coincidence that should have X1, Y1, T1, X2, Y2, T2, TOF for a total of 7
hits in a single event

This is a good DANTE-
DANTE event

Time
alignment
looks good

Event building in ReadCaenRaw

ANCILLARY
EVENT

"eventContainer" size in ReadCaenRaw.h

eventContainer timeSorted

"timeSorted" size in ReadCaenRaw.cxx

Root output
• It has the same format of the TreeBuilder
• You can run the selector on it
• It’s good to check the ancillary data before going trough

femul

Root output
• In the example data you will see both data from both PSD (labr) and PHA

(SPIDER and DANTE)

Time coincidence peaks
• You can now check the time alignment of all detectors
• You should aim to have all peaks at 0
• If this is not the case, change the ReadCaenRaw.set,

specifically the tsoffset keyword for the channel that is not
aligned

Things to check

• There is coincidence peak between agata and the ancillaries
• There is a coincidence peak between the ancillaries themselves
• The coincidence peak remains during the whole experiment
• The coincidence peak has a shape that makes sense

Possible issues and how to solve them

Coincidences stop at
some point

Multiple peaks

No peak

Exponential shape

Online building problem

Ancillaries or cores not aligned

There is no global offset

The global time offset is wrong

Loss of statistics

Online building problem

Run
ReadCaenRaw

and femul

Align with genconf.py or
ReadCaenRaw.set

Find the coincidence peak as
explained in

Scripts/TimeOffsetPeak

Symptoms Disease Cure

Time offset fix
• If you need to find the time coincidence peak, you can follow the

instructions in the README.md in
agataselector/Scripts/TimeOffsetFix

Time offset fix

Selector Optimization

• Data reduction / selection
• Scanning parameters
• Multiparameter minimization

• Grid – search optimization
oNot well tested yet
oFine tuning
oSee main README.md of agataselector (or ask Matus Balogh)

Data reduction

Example:
RunSelector --conf selector.conf --nrthr 10 --reduction_cond

"nbSPIDER > 0 && nbCores > 0 && trackE > 900"
628 MB -> 23 MB

hadd optData_0000.root Data/run_0034/Out/Analysis/red_Tree_000*

First we reduce the amount of data to use for optimization. The best condition to achieve
this is experiment dependent, but usually you:
• Require coincidence
• May require to be in the coincidence peak (reject background)
• Select an energy range
• …

This will create reduced files in the data folder, with the same name as the old ones with the
"red_" prefix. You should then sum them all into one:

OBS: multiple runs can be used

Scan a parameter

PARAMETER SPIDER_CONF X_SHIFT 0 -20 20 1 mm #PARAMETER |detector|par_name|initial_value|min|max|step|
SCAN SPIDER_CONF X_SHIFT 0 -20 20 4 mm #SCAN |detector|par_name|initial_value|min|max|step|
TRANSITION AgataSpider h_EDC 991.5 3 0.1 0.5 keV #TRANSITION |folder|spec_name|centroid|sigma|tail|bias|
ONLY_SCAN YES #optional

• Choose the spectrum (and transition) to optimize
• Choose the parameter(s) to optimize
• In the "selector.conf", in "OPTIMIZER_CONF" you add both

Scan a parameter

PARAMETER SPIDER_CONF X_SHIFT 0 -20 20 1 mm #PARAMETER |detector|par_name|initial_value|min|max|step|
SCAN SPIDER_CONF X_SHIFT 0 -20 20 4 mm #SCAN |detector|par_name|initial_value|min|max|step|
TRANSITION AgataSpider h_EDC 991.5 3 0.1 0.5 keV #TRANSITION |folder|spec_name|centroid|sigma|tail|bias|
ONLY_SCAN YES #optional

• Choose the spectrum (and transition) to optimize
• Choose the parameter(s) to optimize
• In the "selector.conf", in "OPTIMIZER_CONF" you add both

• Run the selector (scans in file "out.root")

RunSelector 9999 --conf selector.conf \
--nrthr 1 --verb -1 --only_enabled_histos \
--optimize

OBS: "only_enabled_histos" option activated,
you should modify accordingly the file
"Conf/enabled_histos.conf"

Fit with multiparameter optimization

PARAMETER SPIDER_CONF X_SHIFT 0 -20 20 1 mm
PARAMETER SPIDER_CONF Y_SHIFT 0 -20 20 1 mm
PARAMETER SPIDER_CONF Z_SHIFT 0 -20 20 1 mm
TRANSITION AgataSpider h_EDC 991.5 3 0.1 0.5 keV

• Similar notation to scan:

Fit with multiparameter optimization

PARAMETER SPIDER_CONF X_SHIFT 0 -20 20 1 mm
PARAMETER SPIDER_CONF Y_SHIFT 0 -20 20 1 mm
PARAMETER SPIDER_CONF Z_SHIFT 0 -20 20 1 mm
TRANSITION AgataSpider h_EDC 991.5 3 0.1 0.5 keV

• Similar notation to scan:

• Run selector with "debug canvas" option

RunSelector 9999 --conf selector.conf \
--nrthr 1 --verb -1 --only_enabled_histos \
--optimize --debug_canvas

• If fits are not good, you change parameters in
file "Conf/Optimizer/parameters.dat"

Fit with multiparameter optimization

PARAMETER SPIDER_CONF X_SHIFT 0 -20 20 1 mm
PARAMETER SPIDER_CONF Y_SHIFT 0 -20 20 1 mm
PARAMETER SPIDER_CONF Z_SHIFT 0 -20 20 1 mm
TRANSITION AgataSpider h_EDC 991.5 3 0.1 0.5 keV

• Similar notation to scan:

• At the end output file is run with best parameters

• Run selector with "debug canvas" option

RunSelector 9999 --conf selector.conf \
--nrthr 1 --verb -1 --only_enabled_histos \
--optimize --debug_canvas

• While it is running, you can monitor with

• If fits are not good, you change parameters in
file "Conf/Optimizer/parameters.dat"

• Once fits are good, run optimization without
option "debug_canvas" option

RunSelector 9999 --conf selector.conf \
--nrthr 1 --verb -1 --only_enabled_histos \
--optimize

tail -f Conf/Optimizer/log.txt

Cost function
The cost function takes into account many factors:
• The fitted energies
• The fitted sigmas (+ tails)
• The reference energy
• The bias on each transition
• The number of non-converging fits
• A weight factor

Cost function

TAIL 0 # 0: notail, 1: right, 2: left, 3: left+right, 4: symmetric

NON_CONVERGENCE_COST 5 # Multiplier cost for fits that did not converge

SIGMA_WEIGHT 0.5 # 0 for pure centroid optimization, 1 for pure width optimization

Keywords:

Additional files

##################End of minimizer#####################
#################Running with optimal parameters
=============== it: 74 =================
par: SPIDER_CONF X_SHIFT ---> val: -0.00187371
par: SPIDER_CONF Y_SHIFT ---> val: 0.00157457
par: SPIDER_CONF Z_SHIFT ---> val: 0.000614222
COST 2.47316
FITTED MEAN 991.501
FITTED SIGMA 4.92468

idx: 0
name : init_val min max fixed
Ampl_0 1.000000e+04 0.000000e+00 1.000000e+08 0
Mean_0 9.915000e+02 9.865000e+02 9.965000e+02 0
Sigma_0 5.000000e+00 1.650000e+00 1.500000e+01 0
Tau_left_0 1.000000e-04 1.000000e-03 1.000000e+01 0
Tau_right_0 1.000000e-04 1.000000e-03 1.000000e+01 0
pol_0 0.000000e+00 -1.000000e-01 1.000000e-01 0
pol_1 0.000000e+00 -1.000000e-01 1.000000e-01 0
min_max 9.665000e+02 1.016500e+03

File: Conf/Optimizer/parameters.dat

FIT_PAR_FILE parameters.dat #Name of parameter file

File: Conf/Optimizer/log.txt

LOG_FILE log.txt #Name of log file

OBS: If not present it's created,
otherwise it's read

Final remarks on optimization
• You can should play with hyper-parameters

ALGORITHM Simplex # Name of algorithm (Migrad, Simplex,...)

MINIMIZER Minuit # Name of minimizer (Minuit/Minuit2, Fumili, GLSMultiMin, Genetic)

BKG_POL_ORDER 1 # Polynomial order for background
MAX_CALLS 1000 # Maximum number of minimizer calls
TOLERANCE 0.1 # Minimizer tolerance
PRECISION 0.01 # Minimizer precision (likely leave 0 for optimally calculated value)
USE_INTERVALS NO # Use intervals in minimization (try what is best)
VALID_ERRORS NO # Performs error analysis (e.g. run Hesse for Minuit)
...

Background subtraction
• The selector has a background subtraction option that can really improve the results in some cases

• This can be done for each detectors or for the coincidence between detectors (NOT BOTH)

• To activate you run the selector with "--subtract_bkg" option and you have to set background regions
in configuration file "selector.conf"

COINC_W_RIGHT_RIGHT_BKG 50 # Right Background time window on the right side of the coincidence peak

COINC_W_LEFT_RIGHT_BKG 15 # Left Background time window on the right side of the coincidence peak
COINC_W_RIGHT_LEFT_BKG -5 # Right Background time window on the left side of the coincidence peak
COINC_W_LEFT_LEFT_BKG -35 # Left Background time window on the left side of the coincidence peak

COINC_W_LEFT 0 # Time window left with the same type of det
COINC_W_RIGHT 10 # Time window right with with the same type of det

RunSelector 34 --conf selector.conf --subtract_bkg

Background subtraction
How it works:
• Selector is run 3 times, selecting events in each region
• The corresponding spectra are then normalized on the width of the region
• Finally the background subtraction takes place (on each plot)

Background subtraction
Asymmetric peaks
Example: AGATA

AGATA_CONF

...

COINC_W_RIGHT_RIGHT_BKG 7

COINC_W_LEFT_RIGHT_BKG 4

COINC_W_RIGHT_LEFT_BKG -2

COINC_W_LEFT_LEFT_BKG -2

COINC_W_LEFT -1

COINC_W_RIGHT 3

Background subtraction
Coincidence
Example: AGATA – DANTE
• In this case you should put the values for all three regions in the AGATA_CONF and DANTE_CONF
• Now you can define your normal regions in the AGATADANTE_CONF

AGATA_CONF

...

COINC_W_RIGHT_RIGHT_BKG 5

COINC_W_LEFT_RIGHT_BKG -1

COINC_W_RIGHT_LEFT_BKG 5

COINC_W_LEFT_LEFT_BKG -1

COINC_W_LEFT -1

COINC_W_RIGHT 5

DANTE_CONF

...

COINC_W_RIGHT_RIGHT_BKG 20

COINC_W_LEFT_RIGHT_BKG -20

COINC_W_RIGHT_LEFT_BKG 20

COINC_W_LEFT_LEFT_BKG -20

COINC_W_LEFT -20

COINC_W_RIGHT 20

AGATADANTE_CONF

...

COINC_W_RIGHT_RIGHT_BKG 50

COINC_W_LEFT_RIGHT_BKG 15

COINC_W_RIGHT_LEFT_BKG -5

COINC_W_LEFT_LEFT_BKG -35

COINC_W_LEFT 0

COINC_W_RIGHT 10

Background subtraction

Example of results:
• Coulex experiment
• Transition of interest in binary

partner close to 511 keV
• Have to remove background

from 511 keV

Thank you for your attention

Lecturer: Elia Pilotto
Special thanks to: Daniele Brugnara
On behalf of the AGATA collaboration

	Slide 1: AGATA ancillaries analysis: rebuilding events and selector optimization
	Slide 2
	Slide 3: Rebuilding events
	Slide 4: Introduction
	Slide 5: Handling the RAW data
	Slide 6
	Slide 7: ReadCaenRaw: how to run
	Slide 8: Configuration file: PRISMA-LABR conf
	Slide 9: Configuration file: SPIDER-DANTE-LABR conf
	Slide 10: ListFrames: Labr only
	Slide 11: Minfold 2
	Slide 12: Prisma-Labr coincidence
	Slide 13: Example of a DANTE-DANTE coincidence
	Slide 14: Event building in ReadCaenRaw
	Slide 15: Root output
	Slide 16: Root output
	Slide 17: Time coincidence peaks
	Slide 18: Things to check
	Slide 19: Possible issues and how to solve them
	Slide 20: Time offset fix
	Slide 21: Time offset fix
	Slide 22: Selector Optimization
	Slide 23: Data reduction
	Slide 24: Scan a parameter
	Slide 25: Scan a parameter
	Slide 26: Fit with multiparameter optimization
	Slide 27: Fit with multiparameter optimization
	Slide 28: Fit with multiparameter optimization
	Slide 29: Cost function
	Slide 30: Cost function
	Slide 31: Additional files
	Slide 32: Final remarks on optimization
	Slide 33: Background subtraction
	Slide 34: Background subtraction
	Slide 35: Background subtraction
	Slide 36: Background subtraction
	Slide 37: Background subtraction
	Slide 38

