

# AGATA ancillaries analysis: rebuilding events and selector optimization



Lecturer: Elia Pilotto On behalf of the AGATA collaboration

- Part 1: Reading raw data and building the ancillary events
- Part 2 : Using the optimization of the selector and other features



# Rebuilding events

- This will be a bit technical, but it is important to understand what is happening "under the hood" do debug issues and understand how the data flow works
- We need to produce an adf file to feed to femul to produce the root trees
- The EventMerger of femul requires built events (with composite frames), so we need to produce





### Handling the RAW data

- The DAQ that runs online (xDaq) consists of some actors that handle different tasks.
- Each actor can write data to disk



- Reads the binary output from the CAEN digitizers
  - There are two different firmware types: PHA and PSD
  - There are also two different firmware versions which we will call 1 and 2
- Builds the time coincidences with a simple event builder, we can set the time window
- Can also include and build PRISMA events both for analyzed and raw data



#### ReadCaenRaw: how to run

```
daniele@ccvisit15 AncMerging % ./ReadCaenRaw
Usage: ./ReadCaenRaw [OPTIONS]
Options:
                                  Show this help message and exit
  --help, -h
  --root <OutputRootFileName>
                                   Specify the output root file name
                                  Set the global ancillary timestamp offset (double)
  --global-anc-tsoffset <value>
  --nrevts <value>
                                  Set the number of events to process (integer)
  --prisma <file1> [file2 ...]
                                  Specify one or more input Prisma files
                                  Specify one or more ancillary input files
  --input <file1> [file2 ...]
  --adf <outAdfFileName>
                                  Specify the output ADF file name
Example:
  ./ReadCaenRaw --root output.root --global-anc-tsoffset 1.5 --nrevts 100 \
                --dante 5 --prisma prisma1.dat prisma2.dat --input anc1.dat anc2.dat \
                --adf output.adf
```

- The ReadCaenRaw is contained in the agataselector and can be compiled running cmake -DBUILD\_SCRIPTS=On .
- You will find the executable in your build folder under Scripts/AncMerging/

# Configuration file: PRISMA-LABR conf

ReadCaenRaw.set\_labrprisma 25 B #window: width of the time window used for the event building (in ns) 1 2 window 500 3 #boardDef: # arg 1: boardId 5 # arg 2 :boardVersion(V1725/V1730==1 - VX2740 ==2) # arg 3 :number of channels # arg 4: FWVersion (PHA or PSD) 8 9 # arg 5: ns per timestamp # arg 6: ns per sample 10 # arg 7: data key: 0xFA0201A2 = SPIDER ; LABR = 0xFA0201A5 ; DANTE = 0x 11 board 1 1 16 PSD 2 2 labr 12 13 14 #minFold: 15 # arg 1: detector # arg 2: minFold for this detector 16 # arg 3: keep only events if coincidence with other board 17 18 minfold 1 0 19 20 # board channel timeOffset tsoffset 1 0 130 21

- 22 tsoffset 1 1 130
  23 tsoffset 1 2 130
  24 tsoffset 1 3 130
  25 tsoffset 1 4 130
- 26 tsoffset 1 5 130
- 27 tsoffset 1 6 130 28 tsoffset 1 7 130

- **window** [time window width in nanoseconds, usually around 500]
- board [board number] [firmware version: 1 or 2] [number of channels: normally 16 or 64] [firmware type: PSD or PHA] [nanoseconds per timestamp] [nanoseconds per sample] [detector name]
- tsoffset [board number][channel] [value of offset in timestamps (multiples of 10 ns)]
- **minfold**: [board number] [minimum fold of a board to write an event in the output]

# Configuration file: SPIDER-DANTE-LABR conf

```
🕒 ReadCaenRaw.set_labrdantespider 🖺 2.63 KiB
       1 #window: width of the time window used for the event building (in ns)
           window 500
       2
       3
           #boardDef:
       4
           # arg 1: boardId
           # arg 2 :boardVersion(V1725/V1730==1 - VX2740 ==2)
           # arg 3 :number of channels
           # arg 4: FWVersion (PHA or PSD)
           # arg 5: ns per timestamp
       9
       10 # arg 6: ns per sample
      11 # arg 7: data key: 0xFA0201A2 = SPIDER ; LABR = 0xFA0201A5 ; DANTE = 0x
      12 boardDef 0 1 16 PSD 2 2 labr
      13 boardDef 1 2 64 PHA 8 8 spider
      14 boardDef 5 1 16 PHA 4 4 dante
      15
      16
      17 #minFold:
      18
          # arg 1: minFold for this detector
         # arg 2: keep only events if coincidence with other board
      19
         minFold 2 0
      20
      21 minFold 1 0
      22
          minFold 1 0
      23
      24
                              timeOffset
       25
           # board
                    channel
                     0 0
                                121
       26
           tsoffset
       27
           tsoffset
                     0 1
                                121
       28
                                121
           tsoffset
       20
           +004400+
                     0 7
                                101
```

- **window** [time window width in nanoseconds, usually around 500]
- board [board number] [firmware version: 1 or 2] [number of channels: normally 16 or 64] [firmware type: PSD or PHA] [nanoseconds per timestamp] [nanoseconds per sample] [detector name]
- tsoffset [board number][channel] [value of offset in timestamps (multiples of 10 ns)]
- minfold: [board number] [minimum fold of a board to write an event in the output]

| ListFrames              | s: Labr o | only  |          |              | Compo<br>Lab | osite frame<br>or hit |       |            |
|-------------------------|-----------|-------|----------|--------------|--------------|-----------------------|-------|------------|
| Gamma-gamma             | 235       | 11/76 | 20<br>76 | Ca020100     | 231          | 26784040305           | A145  | eventiranc |
|                         |           | 11470 | - 28     | $f_a 020100$ | 259          | 20784040303           | 4145  | event      |
| coincidence of the labr |           |       | 28       | fa0201a5     | 271          | 3                     |       |            |
| (fa0201a5)              | 236       | 11552 | 48       | ca020100     | 0            | 26784053342           | 13037 | event:ranc |
|                         |           |       | 28       | fa0201a5     | 260          | 0                     |       |            |
|                         | 237       | 11600 | 48       | ca020100     | 0            | 26784056728           | 3386  | event:ranc |
|                         |           |       | 28       | fa0201a5     | 259          | 0                     |       |            |
|                         | 238       | 11648 | 48       | ca020100     | 0            | 26784065158           | 8430  | event:ranc |
|                         |           |       | 28       | fa0201a5     | 256          | 0                     |       |            |
|                         | 239       | 11696 | 48       | ca020100     | 0            | 26784069669           | 4511  | event:ranc |
|                         |           |       | 28       | fa0201a5     | 256          | 0                     |       |            |
|                         | 240       | 11744 | 48       | ca020100     | 0            | 26784102553           | 32884 | event:ranc |
|                         |           |       | 28       | fa0201a5     | 264          | 0                     |       |            |
|                         | 241       | 11792 | 48       | ca020100     | 0            | 26784108471           | 5918  | event:ranc |

20

£-0201-E

The eventnumber slot in the adf headers for the ancillaries is misleading. Since it is not used, to save space, it has been exploited to save the board and channel info of the hit. To extract board and channel can be done with a bit mask and bit shift:



| Minfold 2                                                                                             |                    |                      | First timestamp of the ancillaries |          | Time difference with<br>respect to the previous |               |         |            |
|-------------------------------------------------------------------------------------------------------|--------------------|----------------------|------------------------------------|----------|-------------------------------------------------|---------------|---------|------------|
|                                                                                                       |                    |                      |                                    |          |                                                 | fra           | ame     |            |
|                                                                                                       | #event_ck_b0       | ffsetorth            | bSize                              | 0xKeyADF | eventNum                                        | v:l)timeStamp | dTstamp | keyADFname |
|                                                                                                       | /include/tr@cking  | Lclus <b>0</b> er.h  | 76                                 | ca020100 | 0                                               | 26781315390   |         | event:ranc |
|                                                                                                       | /include/tracking  |                      | ,h <b>28</b>                       | fa0201a5 | 261                                             | 0             |         |            |
|                                                                                                       | /include/tracking  |                      | 28                                 | fa0201a5 | 262                                             | 0             |         |            |
|                                                                                                       | /include/tracking  | _eve <b>76</b> s.h   | 76                                 | ca020100 | 0                                               | 26781898753   | 583363  | event:ranc |
| Setting minfold 2 for the                                                                             | /include/tracking  |                      | 28                                 | fa0201a5 | 259                                             | 0             |         |            |
|                                                                                                       | /lib/lib/ncillary  |                      | 28                                 | fa0201a5 | 260                                             | 0             |         |            |
| LABR board, we only store                                                                             | /include/Ancillar  | 152                  | 76                                 | ca020100 | 0                                               | 26782083333   | 184580  | event:ranc |
|                                                                                                       | /include/Ancillary |                      | h <b>28</b>                        | fa0201a5 | 258                                             | 0             |         |            |
| gamma-gamma<br>coincidences, this can be<br>useful to reduce the data or<br>to find coincidence peaks | /include/Ancillary |                      | h 28                               | fa0201a5 | 261                                             | 0             |         |            |
|                                                                                                       | /include/Co3verter | 228                  | 76                                 | ca020100 | 0                                               | 26782431032   | 347699  | event:ranc |
|                                                                                                       | /include/Dante.h   |                      | 28                                 | fa0201a5 | 263                                             | 0             |         |            |
|                                                                                                       | /lib/libPSAFilter  |                      | 28                                 | fa0201a5 | 264                                             | 2             |         |            |
|                                                                                                       | /include/PS4Filter | 304                  | 76                                 | ca020100 | 0                                               | 26783123146   | 692114  | event:ranc |
|                                                                                                       | /include/PSAFilter |                      | 28                                 | fa0201a5 | 256                                             | 0             |         |            |
|                                                                                                       | /include/GridSeard |                      | 28                                 | fa0201a5 | 264                                             | 1             |         |            |
|                                                                                                       | /include/SignalRag | 380                  | 76                                 | ca020100 | 0                                               | 26783165714   | 42568   | event:ranc |
|                                                                                                       | /lib/libPostPSAFil |                      | 28                                 | fa0201a5 | 257                                             | 0             |         |            |
|                                                                                                       | /include/PostPSAF  |                      | 28                                 | fa0201a5 | 261                                             | 0             |         |            |
|                                                                                                       | /lib/libGlobalFil  | 456                  | 76                                 | ca020100 | 0                                               | 26783570632   | 404918  | event:ranc |
|                                                                                                       | /include/GlobalFi  |                      | 28                                 | fa0201a5 | 256                                             | 0             |         |            |
|                                                                                                       | /lib/libAGAPRO_Bas |                      | 28                                 | fa0201a5 | 263                                             | 0             |         |            |
|                                                                                                       | /include/AGAPRO_Bo | as <b>532</b> SB . h | 76                                 | ca020100 | 0                                               | 26784040305   | 469673  | event:ranc |
|                                                                                                       | /lib/libAGAPRO_TSU |                      | 28                                 | $f_{0}$  | 259                                             | 0             |         |            |

### Prisma-Labr coincidence

- We are now interested in merging the PRISMA data with the other ancillaries
- This is useful for DANTE and the LABR so far
- We just need to use the -prisma option:
  - ./ReadCaenRaw - input [files] - prisma [files]
- You have several options:
  - Include only the raw PRISMA data (if you are doing the analysis with the selector) → fa0201a0
  - Include only the analyzed PRISMA data (if you have already done the analysis with the prisma filters) → fa0201a1
  - Include both of them if you want to keep all options. Note that this will double the amount of space on disk used by prisma

|                  |       |         | 55L | TUOLOTUO | 0   |             |       | .uucu.runco |
|------------------|-------|---------|-----|----------|-----|-------------|-------|-------------|
|                  | 83442 | 4122628 | 48  | ca020100 | 0   | 27798784921 | 13011 | event:ranc  |
| D                |       |         | 28  | fa0201a5 | 264 | 0           |       |             |
| Prisma-labr time | 83443 | 4122676 | 580 | ca020100 | 0   | 27798787167 | 2246  | event:ranc  |
| coincidence      |       |         | 532 | fa0201a0 | 0   | 19          |       | .data:ranc0 |
|                  |       |         | 28  | fa0201a5 | 271 | 0           |       |             |
|                  | 83444 | 4123256 | 48  | ca020100 | 0   | 27798801217 | 14050 | event:ranc  |
|                  |       |         | 28  | fa0201a5 | 260 | 0           |       |             |
|                  | 83445 | 4123304 | 552 | ca020100 | 1   | 27798805668 | 4451  | event:ranc  |
|                  |       |         | 532 | fa0201a0 | 0   | 0           |       | .data:ranc0 |
|                  | 83446 | 4123856 | 552 | ca020100 | 1   | 27798824875 | 19207 | event:ranc  |
|                  |       |         | 532 | fa0201a0 | 0   | 0           |       | .data:ranc0 |

# Example of a DANTE-DANTE coincidence

• A "perfect" DANTE event should have X, Y and T. In this specific case with two dante detectors at forward angles, an event can be a DANTE-DANTE coincidence that should have X1, Y1, T1, X2, Y2, T2, TOF for a total of 7 hits in a single event



# Event building in ReadCaenRaw



"eventContainer" size in ReadCaenRaw.h

302 int channelsBuffersSize{50000};
303 std::mapsuint16 t std::dequesinter;

"timeSorted" size in ReadCaenRaw.cxx



### Root output

- It has the same format of the TreeBuilder
- You can run the selector on it
- It's good to check the ancillary data before going trough





#### Root output

• In the example data you will see both data from both PSD (labr) and PHA (SPIDER and DANTE)



### Time coincidence peaks

- You can now check the time alignment of all detectors
- You should aim to have all peaks at 0
- If this is not the case, change the ReadCaenRaw.set, specifically the tsoffset keyword for the channel that is not aligned







# Things to check

- There is coincidence peak between agata and the ancillaries
- There is a coincidence peak between the ancillaries themselves
- The coincidence peak remains during the whole experiment
- The coincidence peak has a shape that makes sense



#### Possible issues and how to solve them

| Symptoms                        | Disease                          | Cure                                        |                                 |
|---------------------------------|----------------------------------|---------------------------------------------|---------------------------------|
| Coincidences stop at some point | Online building problem          |                                             |                                 |
| Loss of statistics              | Online building problem          |                                             |                                 |
| Multiple peaks                  | Ancillaries or cores not aligned | Align with genconf.py or<br>ReadCaenRaw.set | Run<br>ReadCaenRaw<br>and femul |
| Exponential shape               | The global time offset is wrong  | Find the coincidence peak as                |                                 |
| No peak                         | There is no global offset        | Scripts/TimeOffsetPeak                      |                                 |

### Time offset fix

 If you need to find the time coincidence peak, you can follow the instructions in the README.md in agataselector/Scripts/TimeOffsetFix

Fist of all, compile the script with

sh compile.sh

You should get an executable called fix to find the offset. This correlates all possible events and generates a histogram where a peak should be present. The x-position of the peak corresponds to the peak value.

රී

#### Finding the offset

You should have the agapro package installed with the ListFrames program installed. Locate your ancillary BU file whith should be named like ancillaryBU\_i\*\*\*\_\*\*\*\*\_0000.adf . Chose one good AGATA crystal and locate the psa\_0000.adf file under the data folder such as Data/00A/psa\_0000.adf .

Modify the script generate.sh to point to those files and run it with sh generate.sh. Two files called anc.txt and agata.txt should be generated.

Now it's the time to run ./fix which will read these two files and generate a root file called out.root. Inside this file there should be a big histogram, locate the peak in the histogram and note precisely the x-axis position. This is your offest number. You may have to modify the fix.C script to change the limits and binning of the histogram of the dimension of the vectors in case no peak is present. Then recompile the script.

You can use the macro drawHist.cxx for help in finding the peak.

#### Time offset fix

[daniele@ccvisit15 AncMerging % ./ReadCaenRaw
Usage: ./ReadCaenRaw [OPTIONS]

#### **Options:**

| help, -h                                       | Show this help message and exit                    |
|------------------------------------------------|----------------------------------------------------|
| root <outputrootfilename></outputrootfilename> | Specify the output root file name                  |
| global-anc-tsoffset <value></value>            | Set the global ancillary timestamp offset (double) |
| nrevts <value></value>                         | Set the number of events to process (integer)      |
| prisma <file1> [file2]</file1>                 | Specify one or more input Prisma files             |
| input <file1> [file2]</file1>                  | Specify one or more ancillary input files          |
| adf <outadffilename></outadffilename>          | Specify the output ADF file name                   |

#### Example:

# **Selector Optimization**

- Data reduction / selection
- Scanning parameters
- Multiparameter minimization
- Grid search optimization
  - $\circ$  Not well tested yet
  - $\circ$  Fine tuning
  - See main README.md of agataselector (or ask Matus Balogh)



### Data reduction

First we reduce the amount of data to use for optimization. The best condition to achieve this is experiment dependent, but usually you:

- Require coincidence
- May require to be in the coincidence peak (reject background)
- Select an energy range
- •

...

Example:

```
RunSelector --conf selector.conf --nrthr 10 --reduction_cond
"nbSPIDER > 0 && nbCores > 0 && trackE > 900"
```

628 MB -> 23 MB

This will create reduced files in the data folder, with the same name as the old ones with the "red\_" prefix. You should then sum them all into one:

hadd optData\_0000.root Data/run\_0034/Out/Analysis/red\_Tree\_000\*

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

OBS: multiple runs <u>can</u> be used

#### Scan a parameter

- Choose the spectrum (and transition) to optimize
- Choose the parameter(s) to optimize
- In the "selector.conf", in "OPTIMIZER\_CONF" you add both

PARAMETER SPIDER\_CONF X\_SHIFT 0 -20 20 1 mm SCAN SPIDER\_CONF X\_SHIFT 0 -20 20 4 mm TRANSITION AgataSpider h\_EDC 991.5 3 0.1 0.5 keV ONLY\_SCAN YES

#PARAMETER |detector|par\_name|initial\_value|min|max|step|
#SCAN |detector|par\_name|initial\_value|min|max|step|
#TRANSITION |folder|spec\_name|centroid|sigma|tail|bias|
#optional

#### Scan a parameter

- Choose the spectrum (and transition) to optimize
- Choose the parameter(s) to optimize
- In the "selector.conf", in "OPTIMIZER\_CONF" you add both

PARAMETER SPIDER\_CONF X\_SHIFT 0 -20 20 1 mm SCAN SPIDER\_CONF X\_SHIFT 0 -20 20 4 mm TRANSITION AgataSpider h\_EDC 991.5 3 0.1 0.5 keV ONLY\_SCAN YES

• Run the selector (scans in file "out.root")

RunSelector 9999 --conf selector.conf \ --nrthr 1 --verb -1 --only\_enabled\_histos \ --optimize

OBS: "only\_enabled\_histos" option activated, you should modify accordingly the file "Conf/enabled\_histos.conf" #PARAMETER |detector|par\_name|initial\_value|min|max|step|
#SCAN |detector|par\_name|initial\_value|min|max|step|
#TRANSITION |folder|spec\_name|centroid|sigma|tail|bias|
#optional



SPIDER CONF X SHIFTH EDC

# Fit with multiparameter optimization

#### • Similar notation to scan:

PARAMETER SPIDER\_CONF X\_SHIFT 0 -20 20 1 mm PARAMETER SPIDER\_CONF Y\_SHIFT 0 -20 20 1 mm PARAMETER SPIDER\_CONF Z\_SHIFT 0 -20 20 1 mm TRANSITION AgataSpider h\_EDC 991.5 3 0.1 0.5 keV



# Fit with multiparameter optimization

• Similar notation to scan:

PARAMETER SPIDER\_CONF X\_SHIFT 0 -20 20 1 mm PARAMETER SPIDER\_CONF Y\_SHIFT 0 -20 20 1 mm PARAMETER SPIDER\_CONF Z\_SHIFT 0 -20 20 1 mm TRANSITION AgataSpider h\_EDC 991.5 3 0.1 0.5 keV

• Run selector with "debug canvas" option

RunSelector 9999 --conf selector.conf \ --nrthr 1 --verb -1 --only\_enabled\_histos \ --optimize --debug\_canvas



 If fits are not good, you change parameters in file "Conf/Optimizer/parameters.dat"



# Fit with multiparameter optimization

• Similar notation to scan:

PARAMETER SPIDER\_CONF X\_SHIFT 0 -20 20 1 mm PARAMETER SPIDER\_CONF Y\_SHIFT 0 -20 20 1 mm PARAMETER SPIDER\_CONF Z\_SHIFT 0 -20 20 1 mm TRANSITION AgataSpider h\_EDC 991.5 3 0.1 0.5 keV

• Run selector with "debug canvas" option

RunSelector 9999 --conf selector.conf \ --nrthr 1 --verb -1 --only\_enabled\_histos \ --optimize --debug\_canvas



- If fits are not good, you change parameters in file "Conf/Optimizer/parameters.dat"
- Once fits are good, run optimization without option "debug\_canvas" option

RunSelector 9999 --conf selector.conf \ --nrthr 1 --verb -1 --only\_enabled\_histos \ --optimize

• While it is running, you can monitor with

tail -f Conf/Optimizer/log.txt

• At the end output file is run with best parameters



# **Cost function**

The cost function takes into account many factors:

- The fitted energies
- The fitted sigmas (+ tails)
- The reference energy
- The bias on each transition
- The number of non-converging fits
- A weight factor

$$C = (1 - W) \sqrt{\sum_{i=1}^{N} (\mu_i - \epsilon_i)^2 \cdot b_i} + W \sqrt{\sum_{i=1}^{N} \tilde{\sigma_i}^2 \cdot b_i} + N_{nc} C_{nc}$$
$$\tilde{\sigma_i} = \sigma_i + \tau_{l,i} + \tau_{r,i}$$



### **Cost function**

Keywords:

TAIL 0# 0: notail, 1: right, 2: left, 3: left+right, 4: symmetricNON\_CONVERGENCE\_COST 5# Multiplier cost for fits that did not convergeSIGMA\_WEIGHT 0.5# 0 for pure centroid optimization, 1 for pure width optimization

$$C = (1 - W) \sqrt{\sum_{i=1}^{N} (\mu_i - \epsilon_i)^2 \cdot b_i} + W \sqrt{\sum_{i=1}^{N} \tilde{\sigma_i}^2 \cdot b_i} + N_{nc} C_{nc}$$
$$\tilde{\sigma_i} = \sigma_i + \tau_{l,i} + \tau_{r,i}$$



### Additional files

File: Conf/Optimizer/parameters.dat

FIT\_PAR\_FILE parameters.dat #Name of parameter file

idx: 0

name : init\_val min max fixed Ampl\_0 1.00000e+04 0.00000e+00 1.00000e+08 0 Mean\_0 9.915000e+02 9.865000e+02 9.965000e+02 0 Sigma\_0 5.000000e+00 1.650000e+00 1.500000e+01 0 Tau\_left\_0 1.000000e-04 1.000000e-03 1.000000e+01 0 Tau\_right\_0 1.000000e-04 1.000000e-03 1.000000e+01 0 pol\_0 0.00000e+00 -1.000000e-01 1.000000e-01 0 pol\_1 0.00000e+00 -1.000000e-01 1.000000e-01 0 min\_max 9.665000e+02 1.016500e+03 File: Conf/Optimizer/log.txt

LOG\_FILE log.txt #Name of log file

OBS: If not present it's created, otherwise it's read



# Final remarks on optimization

• You can should play with hyper-parameters

...

ALGORITHM Simplex # Name of algorithm (Migrad, Simplex,...)
MINIMIZER Minuit # Name of minimizer (Minuit/Minuit2, Fumili, GLSMultiMin, Genetic)
BKG\_POL\_ORDER 1 # Polynomial order for background
MAX\_CALLS 1000 # Maximum number of minimizer calls
TOLERANCE 0.1 # Minimizer tolerance
PRECISION 0.01 # Minimizer precision (likely leave 0 for optimally calculated value)
USE\_INTERVALS NO # Use intervals in minimization (try what is best)
VALID\_ERRORS NO # Performs error analysis (e.g. run Hesse for Minuit)



- The selector has a background subtraction option that can really improve the results in some cases
- This can be done for each detectors or for the coincidence between detectors (NOT BOTH)
- To activate you run the selector with "--subtract\_bkg" option and you have to set background regions in configuration file "selector.conf"

RunSelector 34 --conf selector.conf --subtract\_bkg

COINC W LEFT RIGHT BKG 15 COINC W RIGHT LEFT BKG -5 COINC W LEFT LEFT BKG -35 COINC W LEFT 0 COINC W RIGHT 10

COINC\_W\_RIGHT\_RIGHT\_BKG 50 # Right Background time window on the right side of the coincidence peak # Left Background time window on the right side of the coincidence peak # Right Background time window on the left side of the coincidence peak # Left Background time window on the left side of the coincidence peak # Time window left with the same type of det # Time window right with with the same type of det



How it works:

- Selector is run 3 times, selecting events in each region
- The corresponding spectra are then normalized on the width of the region
- Finally the background subtraction takes place (on each plot)





Asymmetric peaks

Example: AGATA

AGATA\_CONF

... COINC\_W\_RIGHT\_RIGHT\_BKG 7 COINC\_W\_LEFT\_RIGHT\_BKG 4 COINC\_W\_RIGHT\_LEFT\_BKG -2 COINC\_W\_LEFT\_LEFT\_BKG -2 COINC\_W\_LEFT -1 COINC\_W\_RIGHT 3





#### Coincidence

Example: AGATA – DANTE

- In this case you should put the values for all three regions in the AGATA\_CONF and DANTE\_CONF
- Now you can define your normal regions in the AGATADANTE\_CONF

#### AGATA\_CONF

```
...
COINC_W_RIGHT_RIGHT_BKG 5
COINC_W_LEFT_RIGHT_BKG -1
COINC_W_RIGHT_LEFT_BKG 5
COINC_W_LEFT_LEFT_BKG -1
COINC_W_LEFT -1
COINC_W_RIGHT 5
```

#### DANTE\_CONF

... COINC\_W\_RIGHT\_RIGHT\_BKG 20 COINC\_W\_LEFT\_RIGHT\_BKG -20 COINC\_W\_RIGHT\_LEFT\_BKG 20 COINC\_W\_LEFT\_LEFT\_BKG -20 COINC\_W\_LEFT -20 COINC\_W\_RIGHT 20 AGATADANTE\_CONF

```
...
COI
```

COINC\_W\_RIGHT\_RIGHT\_BKG 50 COINC\_W\_LEFT\_RIGHT\_BKG 15 COINC\_W\_RIGHT\_LEFT\_BKG -5 COINC\_W\_LEFT\_LEFT\_BKG -35 COINC\_W\_LEFT 0 COINC\_W\_RIGHT 10



Example of results:

- Coulex experiment
- Transition of interest in binary partner close to 511 keV
- Have to remove background from 511 keV



Doppler corrected gamma energy for binary partner





#### Thank you for your attention

Lecturer: Elia Pilotto Special thanks to: Daniele Brugnara *On behalf of the AGATA collaboration* 

