The PRISMA magnetic spectrometer: analysis and data processing

Filippo Angelini

Università degli Studi di Padova

INFN - LNL

Istituto Nazionale di Fisica Nucleare

AGATA Analysis Workshop 2025

Lyon, January 2025

Overview

Goal: Full explanation on how to perform the analysis of an experiment with PRISMA + coupling with AGATA

Software and data structure

Structure of files and available tools

Functioning principles

Physics behind reconstruction

and identification in the spectrometer

Calibrations and correction

Analysis procedure

I will use data mainly from 2 experiments:

- ¹¹⁶Sn @ 460 MeV on ⁶⁰Ni (0.2 mg/cm²), Prisma at 20°, multinucleon transfer
- ²⁰⁸Pb @ 1300 MeV on ⁹Be (2.77 mg/cm²), Prisma at 20°, **fission in inverse kinematics**

On the previous episodes

If you are doing your analysis on **PrismaFilters**, you should check the presentation by Elia Pilotto:

https://agenda.infn.it/event/36303/contributions/203916/attachments/1094 46/155668/PresentationPrismaAnalysis.pdf

Data processing structure: up to now

Data processing structure: new version

Data processing structure: new version

Moving to AgataSelector

https://baltig.infn.it/gamma/agataselector

We are moving towards making the AgataSelector the main tool for analysis

Advantages:

- **Faster** global processing and handling of PRISMA + AGATA -> **femul** to be run only once!
- Use of AgataSelector Optimizer for reconstruction / DC
- Interactive tool for setting gates
- Output tree with all variables for quick checks
- Easier to **add more features** if you need!

--optimize --set_gates ENABLE_PREPROCESSTREE YES

 Reference for PRISMA_CONF:
 ANALYSIS_STAGES HIGH_LEVEL
 Analysis from Filters and Selector makes only DC and plots

 ANALYSIS_STAGES ANA_HIGH
 Calibrations from PF, Selector makes reconstruction + gates + DC and plots

 ANALY
 In this presentation we will assume the ALL option but there will be comparisons with Filters

Prisma Raw branch

In this presentation we will assume the *ALL* option. We need the Prisma Raw branch. 2 options:

First option: Produce output PrismaTree with PrismaFilters

root [1] PrismaTree->Print()

*Tree :PrismaTree: PrismaTree *
*Entries : 130450 : Total = 74726850 bytes File Size = 27288187 *
* : : Tree compression factor = 2.74 *

*Br 0 :TSPrisma : TSPrisma/l *
*Entries : 130450 : Total Size= 1047258 bytes File Size = 612250 *
*Baskets : 33 : Basket Size= 32000 bytes Compression= 1.71 *
**
*Br 1 :Raw : MCP raw[3]/s:PPAC Xleft raw[10]/s: *
* PPAC Xright raw[10]/s:PPAC Cathode raw[10]/s:PPAC Y raw[2]/s: *
* TOF raw[10]/s+TC A raw[10]/s+TC B raw[10]/s+TC C raw[10]/s+ *
* If $D = raw[10]/s \cdot IC = \Delta r[t = raw[10]/s \cdot IC = B = raw[10]/s \cdot K$
* I I C C Drift row[10]/s.tc_A_Driftrow[10]/s.tc_B_Driftrow[10]/s.
* Side Capital (Side Date and Call An
* Stoe_C_Taw[2]/S:Stoe_D_Taw[2]/S:montcols_Taw[2]:TAC_LT_VIS/S
*Entries : 130450 : lotal Size= 32975021 bytes File Size = 12837810
*Baskets : 1036 : Basket Size= 32000 bytes Compression= 2.57 *
*
*Br 2 :Analyzed : MONITOR_1/F:MONITOR_2/F:MCP_X/F:MCP_Y/F:MCP_Q/F: *
<pre>* MCP_Theta/F:MCP_Phi/F:X_FP/F:Y_FP/F:TOF/F:IC_Pads[40]/F:IC_E/F: *</pre>
<pre>* IC_DE_A/F:IC_DE_AB/F:IC_RANGE/F:IC_Drift_A/F:IC_Drift_B/F: *</pre>
<pre>* IC_Drift_C/F:Theta/F:Phi/F:Beta/F:Length/F:Radius/F:RBeta/F: *</pre>
<pre>* A_over_q_uncal/F:A_over_q/F:Mass/F:Qvalue/F:Theta_BP/F:Phi_BP/F: *</pre>
<pre>* Beta_BP/F:TAC_LT_LTS/F:Theta_FP/F:Phi_FP/F:IC_col_a/b:IC_col_b/b:*</pre>
<pre>* IC col c/b:IC col d/b:IC a numpads/b:IC b numpads/b: *</pre>
* IC c numpads/b:IC d numpads/b:Z Nr/b:0 Nr/b:A Nr/b:mcp ok/b: *
* tof ok/b:trai ok/b:side ok/b:c ok/b:z ok/b:g ok/b:a ok/b *
*Entries : 130450 : Total Size= 40703906 bytes File Size = 13812917 *
*Baskets : 1279 : Basket Size= 32000 bytes Compression= 2.94 *

Prisma only, faster for calibrations

Prisma Raw branch

Second option:			
Run replay with linked prisma_00	JO#.adi		Replay/run_0046
gen_conf.py: TB_PRISMA=("WriteRawTree", #"WriteAnaTree", #"DoPrismaAnalysis")	<pre>1891 Jan 2 16:57 ADF.conf 4096 Jan 2 16:57 Conf 67 Jan 2 16:57 Data -> /agata07_data3/AGATAD_P2_EXP_011/run 4096 Jan 3 15:38 Out 4096 Jan 2 17:02 Out_singleFile 522 Jan 2 16:57 Topology_FromPSAToTreePRISMA.conf 62562 Jan 3 15:37 gen_conf_46.py 2479504 Jan 3 16:38 log_EXP_011_run_0046.txt 74 Jan 2 17:00 prisma_0000.adf -> /agata07_data8/fangelini/ 74 Jan 2 17:00 prisma_0001.adf -> /agata07_data8/fangelini/ 74 Jan 2 17:00 prisma_0002.adf -> /agata07_data8/fangelini/</pre>	_0046_11-02- EXP_011/PRIS EXP_011/PRIS EXP_011/PRIS	2023_18h54m42s/Data MA/Runs/run_0046/prismaBU_0000.adf_00 MA/Runs/run_0046/prismaBU_0001.adf_00 MA/Runs/run_0046/prismaBU_0002.adf_00
EventMerger_MERGER=("ActualClassEventMerger","SaveDataDir\$SAVEDIR/\$MEI"Window500","keyInevent:data:psa",	RGER ",	LOOP CRYS 0 05B 05C 06 10A 10B 10C Chain 3 Producer Filter Dispatcher	0A 00B 00C 01A 01B 01C 02A 02B 02C 04A 04B 04C A 06B 06C 07A 07B 07C 08A 08B 08C 09A 09B 09C 11A 11B 11C 13A 13B 13C CRYS BasicAFP PostPSAFilter EventBuilder
"keyIn event:ranc", "keyOut event:data", "MinFold 2" , ◀)	Processes ONLY events with AGATA + ancillary (you will not have events with 1 detector alone) Smaller output file and faster replay	ENDLOOP Chain 2 Builder #Consumer Dispatcher	Builder/ EventBuilder BasicAFC EventMerger
		Chain 2 Producer Dispatcher	prisma/ BasicAFP EventMerger
With AGATA, check	with gamma rays will have this output	Chain 3 Builder Filter Consumer	Merger/ EventMerger TrackingFilterOFT TreeBuilder

Topology_FromPSAToTreePRISMA.conf

selector.conf

PRISMA CONF			
DE_TYPE	0		DE variable used for Z gates: 0 -> DE_AB, 1 -> DE_A, 2 -> RANGE(not implemented)
			3 -> DE_A_corr vs E_res_corr, 4 -> Zed from Z_lines
CHARGE_TYPE	0		DE variable used for Z gates: 0 -> IC_E vs RBeta, 1 -> IC_E/RBeta vs IC_E,
			2 -> BETA vs X_FP, 3 -> CHARGE vs A/Q, 4 -> Charge_cal, 5 -> Q_float from Q_line
COINC_W_LEFT	-1		Time window left with the same type of det
COINC_W_RIGHT	1		Time window right with with the same type of det
MAX_IC_ENE	7000		Maximum IC energy in histograms
MAX_IC_dENE	5000		Maximum IC energy of deltaE in histograms
AQ_NBINS	1000		Number of bins in A over Q plots
MAX_AOVERQ	4		Maximum A over Q in histograms
MIN_AOVERQ	2		Maximum A over Q in histograms
MAX_RBETA	0.2		Maximum beta in histograms
MIN_RBETA	0.1		Maximum beta in histograms
TAC_OFFSET	0		Offset for prisma tac
TAC_GAIN	1		Gain for prisma tac
TOF_OFFSET	-8.5	ns	Offset for recalibration of TOF
TOF_GAIN	1		Gain for recalibration of TOF
PHI	0	deg	Detector phi rotation for optimization purposes
ANGLE	20	deg	Detector angle. For AGATA should be 180-prisma_angle
TIME_UNIT	10	ns	Timestamp unit, should 10*ns
CFD_UNIT	0	ns	Cfd units
MCP_ANGLE	135	deg	Intrinsic theta rotation of MCP
Z_ROT_ANGLE	6	deg	Z rotation angle
A_RANGE	48 70		A for plots: min max
Z_RANGE	24 30		Z for plots: min max
BROKEN_PPAC_CHANNEL	S 90		Broken MWPPAC segments: 1 -> broken, 0-> not broken
BROKEN_IC_CHANNELS	2 1		Broken ionization channel segments: 1 -> broken, 0-> not broken
#BROKEN_IC_CHANNELS			Broken ionization channel segments: 1 -> broken, 0-> not broken
BETA_AVG	0 0 0.0	6 #	Average Doppler correction for detector
#AQ_PLOTS	24 20 2	1 #	A/Q conf for histos. Z qmin qmax
#AQ_PLOTS	25 21 2	2 #	A/Q conf for histos. Z qmin qmax
#AQ_PLOTS	26 21 2	3 #	A/Q conf for histos. Z qmin qmax
AQ_PLOTS	27 22 24	4 #	A/Q conf for histos. Z qmin qmax
AQ_PLOTS	28 22 2	6 #	A/Q conf for histos. Z qmin qmax
AQ_PLOTS	29 24 2	6 #	A/Q conf for histos. Z qmin qmax
#AQ PLOTS	30 24 2	5 #	A/Q conf for histos. Z gmin gmax

selector.conf

to quadrupole

to MCP to dipole

<pre># Solver parameters</pre>			
B_QUADRUPOLE	0.637796	Т	Magnetic field of quadrupole
#B_DIPOLE	0.699570		Magnetic field of dipole
B_DIPOLE	0.7250229	т	Magnetic field of dipole
QUAD_LENGTH	460	mm	Length of quadrupole
QUAD_RADIUS	157	mm	Radius of quadrupole
TARGET_QUAD_DISTANCE	420	mm	Distance from target to quadr
OUT_DIPOLE_ANGLE	125	deg	Angle of dipole in degrees
IN_DIPOLE_ANGLE	20	deg	Angle of dipole in degrees
FP_TOLERANCE	1	mm	Tolerance of focal plane
TARGET_MCP_DISTANCE	250	mm	Distance from target to MCP
TARGET_DIPOLE_DISTANCE	1600	mm	Distance from target to dipol
DIPOLE_RADIUS	1200	mm	Radius of dipole
DIPOLE_HEIGHT	200	mm	Height of dipole

ANALYSIS STAGES	ALL #		
PRISMA UNITS CUTS	NO #	Use prisma units for cuts	Warning.
REQUIRE_ICOK	NO #	Require ionization chamber ok in analysis	training.
REQUIRE_SIDEOK	NO #	Require ionization chamber side ok in analysis	NO – gates will be assumed with
REQUIRE_TRAJOK	NO #	Require trajectory ok in analysis	
REQUIRE_TOFOK	NO #	Require time of flight ok in analysis	Internal units of selector $(m, A/Q)$
REQUIRE_MCPOK	NO #	Require mcp ok in analysis	VES gatos will have units as in
ENABLE TREE	NO #	Enable or disable detector TTree to save memory (st	ILO – gales will have utilis as in
ENABLE PREPROTREE	YES #	Enable preprocessed tree	PrismaFilters (mm A/Q*100)
PRISMAFILTER_TKEL	YES #	Use prismafilter TKEL instead 😽 internal calculati	
ENABLE_HISTS	YES #	Enable or disable detector histos to save memory	
RAW_HISTS	NO #	Enable raw histos	To supply a submed A solution of Turkey
ANA_HISTS	YES #	Enable ana histos	To create output Analyzed Tree
MISC_HISTS	NO #	Enable misc histos	
AOVERQ_TEVO_HISTS	NO #	Enable time evolution A over Q histos	
AOVERQ_HISTS	YES #	Enable A over Q histos	
MANAGER_PATH	./Conf/pris	maManager.conf # Prisma manager path	
LUT		Lookup table path	
PRISMA_IN_PATH	./PrismaDat	t a # Prisma data input path (for update_pris	ma option only)
PRISMA_FILE_PATTERN	Tree_ #	Prisma data root file pattern (for update_prisma op	tion only)
PRISMA DIR PATTERN	run #	Prisma data directory pattern (for update prisma op	tion only)

AgataSelector calibration and gates

Calibration files

#Tof calibratio	n file						
id 0 cal 352.25	377 -0.0	496 th	r 3200.	3600.			
id 1 cal 357.40	707 -0.0	5028 th	r 3200.	3700.			
id 2 cal 363.25	085 -0.0	4937 th	r 3400.	3900.			
id 3 cal 347.37	76 -0.0	4915 th	r 3100.	3600.			
id 4 cal 346.41	215 -0.0	4952 th	r 3000.	3600.			
id 5 cal 345.39	904 -0.0	4951 th	r 3000.	3500.			
id 6 cal 340.54	844 -0.0	4948 th	r 3000.	3400.			
id 7 cal 339.64	438 -0.0	4928 th	r 3000.	3400.			
id 8 cal 339.10	445 -0.0	4949 th	r 2500.	3500.			
id 9 cal 338.69	052 -0.0	4908 th	r 2800.	3800.			
			1 1 6 1				
Single id #IC Sides threshold file							
	# Layer A	0 1 . 1	1.60				
	id 0 0 cal	0 1 th	r 160.	4000.			
	id 0 1 cal	0 1 th	r 170.	4000.			
	# Laver B						
Double id	10 I U Cal	0 1 th	r 160.	4000.			
Double id	id 1 1 cal	0 1 th 0 1 th	r 160. r 140.	4000. 4000.			
Double id	id 1 1 cal # Layer C	0 1 th 0 1 th	r 160. r 140.	4000. 4000.			
Double id	id 1 1 cal # Layer C id 2 0 cal	0 1 th 0 1 th 0 1 th	r 160. r 140. r 140.	4000. 4000.			
Double id	id 1 1 cal # Layer C id 2 0 cal id 2 1 cal	0 1 th 0 1 th 0 1 th 0 1 th	r 160. r 140. r 140. r 140.	4000. 4000. 4000.			
Double id	id 1 1 cal # Layer C id 2 0 cal id 2 1 cal # Layer D	0 1 th 0 1 th 0 1 th 0 1 th	r 160. r 140. r 140. r 140.	4000. 4000. 4000. 4000.			
Double id	id 1 1 cal # Layer C id 2 0 cal id 2 1 cal # Layer D id 3 0 cal	0 1 th 0 1 th 0 1 th 0 1 th 0 1 th 0 1 th	r 160. r 140. r 140. r 140. r 140.	4000. 4000. 4000. 4000.			
Double id	id 1 1 cal # Layer C id 2 0 cal id 2 1 cal # Layer D id 3 0 cal id 3 1 cal	0 1 th 0 1 th 0 1 th 0 1 th 0 1 th 0 1 th 0 1 th	r 160. r 140. r 140. r 140. r 140. r 120.	4000. 4000. 4000. 4000. 4000.			

PRISMA README.md

To see the relevant keywords and ids

AgataSelector Prisma Manager

	prismaManager.conf		
######### RAV	V CALIBRATIONS ###########		
TOF CAL	/CALIBRATION/PRISMA/RAW/tof.ca	al	
PPAC THRESH	/CALIBRATION/PRISMA/RAW/ppac t	resh.cal	
PPACPOS CAL	/CALIBRATION/PRISMA/RAW/ppac r	oos cal.cal	
ICE CAL	/CALIBRATION/PRISMA/RAW/ice.ca	l —	
ICSIDES CAL	/CALIBRATION/PRISMA/RAW/icside	es.cal	
ICDRIFT CAL	/CALIBRATION/PRISMA/RAW/icdrif	ft.cal	
MCP CAL	/CALIBRATION/PRISMA/RAW/mcp.ca	ıl	
MCPROT CAL	/CALIBRATION/PRISMA/RAW/mcprot	.cal	
MONITOR CAL	/CALIBRATION/PRISMA/RAW/monito	r.cal	
####### <u>#</u> #####	# RAW GATES ##############		
MCP GATE	/CUT/PRISMA/RAW/MCP		
PPAC GATE	/CUT/PRISMA/RAW/PPACC		
######## ANAL?	ZED CALIBRATIONS ########		
AOQ_CAL	/CALIBRATION/PRISMA/ANA/aoverq.	cal	
CHARGE CAL	/CALIBRATION/PRISMA/ANA/charge.	cal	
########## Al	JALYZED GATES ############		
TOF_GATE	/CUT/PRISMA/ANA/TOF	Reference for P	RISMA CONF:
Q_GATE	/CUT/PRISMA/ANA/CHARGE		
Z_GATE	/CUT/PRISMA/ANA/ZED		
AOQXMCP_CORR	/CUT/PRISMA/ANA/AOVERQ_XMCP	MANAGER_PATH	./Conf/prismaManager.conf
AOQYMCP_CORR	/CUT/PRISMA/ANA/AOVERQ_YMCP		
AOQXFP_CORR	/CUT/PRISMA/ANA/AOVERQ XFP		

Composition of PRISMA

Micro Channel Plate (MCP) entrance detector

- lons emitted from the target
- They cross the C foil (at 45°) emitting secondary electrons
- Electrons are accelerated onto the MCP
- Delay lines in X, Y measure position
- Kapton calibration mask used to have reference positions

OUTPUT: MCP_raw[3] (X,Y,Q) *TOF* (delayed STOP)

Technical information:

- 80x100 mm² active area
- 20 ug/cm2 C foil for electron emission
- Bias voltage ~2.6 kV
- Magnetic field ~ 120 G to direct electrons

MultiWire Parallel Plate Avalanche Counter (MWPPAC)

- lons entering after magnets
- Position needed for trajectory reconstruction
- Time of flight with MCP detector
- 10 horizontal sections: X_right, X_left, cathode (*trigger*)
- Efficiency is low for Z < 15

OUTPUT:

PPAC_Xright_raw[10] PPAC_Xleft_raw[10] PPAC_Cathode_raw[10] PPAC_Y_raw[2] (up,down) TOF_raw[10] (START)

S. Beghini et al., NIM A 551 (2005) 364-374

Technical information:

- 1000x130 mm² active area
- 1.5 um mylar entrance and exit windows
- Filled with iC4H10

Ionization chamber (IC)

- Measurement of energy at the end of PRISMA
- -4×10 pads $+4 \times 2$ side pads (veto)
- Can be filled CH4 or CF4 from ~20 to ~100 mbar
- Needed to extract Z and Q

OUTPUT: $IC_A_raw[10]$ $IC_B_raw[10]$ $IC_C_raw[10]$ $IC_D_raw[10]$ $Side_A_raw[2]$ $Side_B_raw[2]$ $Side_C_raw[2]$ $Side_D_raw[2]$ $IC_A_Drift_raw[10]$ $IC_B_Drift_raw[10]$ $IC_C_Drift_raw[10]$

Technical information:

- 1100(*X*)x200(*Y*)x1200(*Z*) mm³ total volume
- Each pad 265 mm depth x 99 mm width
- 1.5 um mylar entrance window

S. Beghini et al., NIM A 551 (2005) 364-374

Sorting flowchart

МСР	PPAC TOF	PPAC position	IC pads	IC side	IC drift	Monitors
X,Y calibration2D gate	ThresholdsCalibration	 Thresholds 2D gates X,Y calibration 	ThresholdsE Calibration	- Thresholds	- Calibration	- Calibration
[γ			

ΔE-E matrix

- Correct Z bands by X,Y PPAC position
- Z identification with gates

A/Q vs X_FP

- Optimize optical parameters
- Align and calibrate A/Q with TOF offsets

E-Rβ matrix

- Include non-measured energy correction
- Q identification with gates

A/Q vs MCP_X/MCP_Y/X_FP

- Correct aberrations

Mass

Recalibrate A/Q and Q

MCP calibration: position calibration

MCP calibration: position and gate

Calibration mask, measured positions for 20 points

Gate for valid events -> mcp ok = true

./RunSelector --set_gates can be used

MCP calibration: position and gate

Wings down					
#	X (mm)	Y (mm)			
0	1.58	2.07			
1	3.16	0.19			
2	1.58	-1.81			
3	-0.08	0.26			
4	-14.56	21.75			
5	-11.92	18.77			
6	-15.60	15.42			
7	-18.28	18.27			
8	15.99	20.67			
9	20.47	17.77			
10	17.99	14.12			
11	13.55	17.22			
12	16.46	-15.12			
13	19.02	-18.07			
14	14.87	-22.04			
15	12.22	-18.74			
16	-13.17	-15.79			
17	-9.55	-19.66			
18	-12.25	-22.48			
19	-15.87	-18.71			

Wings up

#	X (mm)	Y (mm)
2	2.62	-2.07
3	1.04	-0.19
0	2.62	1.81
1	4.28	-0.26
4	-10.67	22.04
5	-8.02	18.74
6	-12.26	15.12
7	-14.82	18.07
8	16.45	22.48
9	20.07	18.71
10	17.37	15.79
11	13.75	19.66
12	19.80	-15.42
13	22.48	-18.27
14	18.76	-21.75
15	16.12	-18.77
16	-13.79	-14.12
17	-9.35	-17.22
18	-11.79	-20.67
19	-16.27	-17.77

MCP calibration: position and gate

Calibration mask, measured positions for 20 points

Warning: flip in X between raw and calibrated!

Warning: In some experiments the wings on the mask are rotated. Look at the right reference points!

MCP calibration: position calibration

23

Prismaonlinepackage/script/MCP/MCP_cal.C

mask.dat			
pos x_mm ce_0 2.62 ce_1 4.28 ce_2 2.62 ce_3 1.04 tl_4 -10.67 	y_mm 1.81 -0.26 -2.07 -0.19 22.04	x_char 1518 1471 1512 1558.3 1971.8	y_chan 2460 2410 2356.4 2405.4 3045.3

Output:

```
mcp_mix_x_0 = 1
mcp_mix_x_1 = -0.0653546
mcp_mix_y_0 = 0.0660451
mcp_mix_y_1 = 1
cal x: 99 0 3 51.4199 -0.0387309 2.1084e-06
cal y: 99 0 2 -82.7449 0.0328323
```

Outputs **reference** and **calibrated** points and coefficients to put into calibration files

MCP calibration: implementation

Sorting flowchart

МСР	PPAC TOF	PPAC position	IC pads	IC side	IC drift	Monitors
X,Y calibration2D gate	ThresholdsCalibration	Thresholds2D gates	ThresholdsE Calibration	- Thresholds	- Calibration	- Calibration
		- X,Y calibration				

ΔE-E matrix

- Correct Z bands by X,Y PPAC position
- Z identification with gates

A/Q vs X_FP

- Optimize optical parameters
- Align and calibrate A/Q with TOF offsets

E-Rβ matrix

- Include non-measured energy correction
- Q identification with gates

A/Q vs MCP_X/MCP_Y/X_FP

- Correct aberrations

Mass

Recalibrate A/Q and Q

PPAC calibration: position

PPAC calibration: position

All sections together Profile varies with the experiment (Q distribution) Events from which calibration

PPAC calibration: cathode gates

X_R + X_L should be constant as should be Cathode Random drift can affect the signals.

Selection of valid events for every section

X_R + X_L vs Cathode

X_RIGHT + X_LEFT : CATHODE section 5

PPAC calibration: position - implementation

prismaManager.conf

ppac.conf		threshold/x_left.thres	PPAC_THRESH /CALIBRATION/PRISMA/RAW/ppac_tresh.cal				
ind_yu = 0 ind_yd = 1 ind_xl = 2		99 0 2 1367 2878 99 1 2 1073 2663 99 2 2 1164 2654	PPAC_GATE /CUT/PRISMA/RA	AW/PPAC			
<pre>ind_xr = 3 ind_xc = 4 ind_tof = 5</pre>		99 3 2 1136 2649 99 4 2 1298 2798 99 5 2 1249 2785	/CALIBRATION/PRISMA/RAW/p pac_tresh.cal	/CALIBRATION/PRISMA/RAW/ppac_ pos_cal.cal			
<pre>#ppac_banana = ban/Ca ppac_banana = ban/Ca ban_res_x = 10000 ban_res_y = 10000 xl_file = cal/cath-1</pre>	ath-L+R_open.ban th-L+R.ban eft.cal	99 6 2 1299 2840 99 7 2 1367 2841 99 8 2 1483 2981 99 9 2 1508 3003	<pre>#PPAC position thresholds # Xright id 0 0 thr 2191 3718 id 0 1 thr 1359 2899 id 0 2 thr 1272 2757</pre>	<pre>#PPAC position calibration file # XRight - XLeft id 0 0 thr -1000 1000 cal 22.4191 0.0332439</pre>			
<pre>xr_file = cal/right- xfp_file = cal/xfp-m wfp_file = cal/wfp-m</pre>	cath.cal m.cal	threshold/xfp-mm.cal 0 0 2 22.4191 0.0332439 0 1 2 141.662 0.0323113 0 2 2 246.284 0.0339267	id 0 3 thr 1273 2777 id 0 4 thr 1330 2834 id 0 5 thr 1200 2670	id 0 1 thr -1000 1000 cal 141.662 0.0323113			
<pre>tof_file = cal/yip-in tof_file = cal/tof-t tof_ofile = cal/alli</pre>	otal.cal neamento-ns.cal		id 0 9 thr 1367 2830	 # XRight - XCathode id 1 0 thr -1000 1000 cal -			
<pre>xl_threshold_file = threshold/x_left.thres xr_threshold_file = threshold/x_right.thres xc_threshold_file = threshold/x_cathode.thres tof_threshold_file = threshold/tof.thres tof_offs = 380</pre>		0 3 2 345.786 0.0333924 0 4 2 449.147 0.0336007 0 5 2 552.870 0.0335124 0 6 2 649.009 0.0333850 0 7 2 753.392 0.0335077 0 8 2 849.595 0.0331657 0 8 2 849.595 0.0331657	<pre># Xleft id 1 0 thr 1367 2878 id 1 1 thr 1073 2663 # XCathode id 2 0 thr 100. 3950.</pre>	1.0033 0.068822 # XCathode - XLeft id 2 0 thr -1000 1000 cal 43.7873 0.067610 			
		0 9 2 955.391 0.0341200	id 2 1 thr 100. 3950. # YUp id 3 0 thr 1 4090	<pre># YUp - YDown id 3 0 thr -1000 1000 cal 6.56989 0.05591398</pre>			
29	PrismaFilters		# YDown id 3 1 thr 1 4090	AgataSelector			

PPAC calibration: TOF

TOF:X FP

250

10²

Cathodes OR ->TOF start; Delayed MCP->TOF stop Raw TOF is **inverted** Linear calibration

Gain was measured with time calibrator e.g. tof-total.cal **Offsets need to be adjusted looking at the alignment**

PPAC calibration: TOF - implementation

ppac.conf	threshold/tof.thres	
ind_yu = 0 ind_yd = 1 ind_yl = 2	99 0 2 3200. 3600. 99 1 2 3200. 3700.	prismaManager.conf
$ind_{x1} = 2$ ind_xr = 3	99 2 2 3400. 3900.	TOF_CAL /CALIBRATION/PRISMA/RAW/tof.cal
$ind_xc = 4$ ind tof = 5	99 5 2 3100. 3600. 99 4 2 3000. 3600.	
= $# nnac hanana = han/Cath-L+R onen han$	99 5 2 3000. 3500. 99 6 2 3000. 3400.	
ppac_banana = ban/Cath-L+R.ban	99 7 2 3000. 3400.	
ban_res_x = 10000 ban_res_y = 10000	99 8 2 2500. 3500. 99 9 2 2800. 3800.	/CALIBRATION/PRISMA/RAW/tof.cal
<pre>xl_file = cal/cath-left.cal xr_file = cal/right-cath.cal</pre>		#Tof calibration file id 0 cal 352.25377 -0.0496 thr 3200. 3600.
<pre>xfp_file = cal/xfp-mm.cal</pre>		id 1 cal 357.40707 -0.05028 thr 3200. 3700.
tof_file = cal/tof-total.cal	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
<pre>tof_ofile = cal/allineamento-ns.cal</pre>	$0\ 2\ 2\ +1.45085\ -0.04937$ $0\ 3\ 2\ +7\ 5776\ -0\ 04915$	id 4 cal 346.41215 -0.04952 thr 3000. 3600. id 5 cal 345.39904 -0.04951 thr 3000. 3500.
<pre>xl_threshold_file = threshold/x_left.thres xr threshold file = threshold/x right.thres</pre>		id 6 cal 340.54844 -0.04948 thr 3000. 3400.
<pre>xc_threshold_file = threshold/x_cathode.thres taf threshold_file = threshold/taf threshold</pre>	092+0.29052 -0.04908	id 7 cal $339.64438 = -0.04928$ thr $3000.3400.$ id 8 cal $339.10445 = -0.04949$ thr $2500.3500.$
tor_threshold_life = threshold/tor.thres	cal/allineamento-ns.cal	id 9 cal 338.69052 -0.04908 thr 2800. 3800.
tof_offs = 380.	1 0 2 -29.7 1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Offsets are the sum of the
	1 3 2 -40.2 1	different components from filters
	1 9 2 -41.6 1	
31 PrismaFilters		AgataSelector

Sorting flowchart

МСР	PPAC TOF	PPAC position	IC pads	IC side	IC drift	Monitors
X,Y calibration2D gate	- Thresholds - Calibration	Thresholds2D gates	 Thresholds E Calibration 	- Thresholds	- Calibration	- Calibration
		- X, Calibration				
			γ			
		Δ	E-E matrix			
		 Correct Z bands by X,Y PPAC position Z identification with gates 				
		A/Q vs X_FP				
		 Optimize optical p Align and calibrat 	parameters e A/Q with TOF offse	ets		
	E-Rβ matrix					
	,	 Include non-measured energy correction Q identification with gates 				
		A/Q vs MCP_X/MCP_Y/X_FP				

- Correct aberrations

Mass

Recalibrate A/Q and Q

IC calibration: energy

Linear calibration (gain matching of 40 pads) is estimated with manually with a charge injector Thresholds should cut pedestal

You should have this calibration from the online e.g. IC_gain_60_2_5_B_2022_chargeInject_good.cal

Thresholds

IC calibration: energy - implementation

ionch.conf ind DE A = 0ind DE B = 1ind DE C = 2ind DE D = 3ind DRIFT A = 4ind DRIFT B = 5ind DRIFT C = 6ic A Calibration file = cal/IC gain 60 2 5 A 2022 chargeInject good.cal ic B Calibration file = cal/IC gain 60 2 5 B 2022 chargeInject good.cal ic C Calibration file = cal/IC gain 60 2 5 C 2022 chargeInject good.cal ic D Calibration file = cal/IC gain 60 2 5 D 2022 chargeInject good.cal ic A Threshold file = threshold/IC A.thres ic B Threshold file = threshold/IC B.thres ic C Threshold file = threshold/IC C.thres ic D Threshold file = threshold/IC D.thres

	thres	sho	old/IC	A.thres	cal/l	C_gair	n_60_2	2_5_B_2022_cha	rgeInject_good.cal
99	0 2	2	140.	3980.	99	0	2	-67.6767	0.94965
99	1 2	2	140.	3980.	99	1	2	-82.6652	0.94089
99	2 2	2	180.	3980.	99	2	2	-84.1486	0.95287
99	32	2	180.	3980.	99	3	2	-102.965	0.92621
99	4 2	2	180.	3980.	99	4	2	-94.9887	0.95685
99	5 2	2	150.	3980.	99	5	2	-82.2111	0.94681
99	62	2	150.	3980.	99	6	2	-98.855	0.94945
99	7 2	2	150.	3980.	99	7	2	-107.011	0.93989
99	8 2	2	120.	3980.	99	8	2	-67.7114	0.94556
99	9 2	2	120.	3980.	99	9	2	-104.861	0.96855

PrismaFilters

prismaManager.conf

ICE CAL CALIBRATION/PRISMA/RAW/ice.cal

CALIBRATION/PRISMA/RAW/ice.cal							
#IC Pads energy calibration file							
# Layer A							
id 0 0 cal	-67.6767	0.94965	thr	140.	3980.		
id 0 1 cal	-82.6652	0.94089	thr	140.	3980.		
id 0 2 cal	-84.1486	0.95287	thr	180.	3980.		
id 0 3 cal	-102.965	0.92621	thr	180.	3980.		
id 0 4 cal	-94.9887	0.95685	thr	180.	3980.		
id 0 5 cal	-82.2111	0.94681	thr	150.	3980.		
id 0 6 cal	-98.855	0.94945	thr	150.	3980.		
id 0 7 cal	-107.011	0.93989	thr	150.	3980.		
id 0 8 cal	-67.7114	0.94556	thr	120.	3980.		
id 0 9 cal	-104.861	0.96855	thr	120.	3980.		
# Layer B							
id 1 0 cal	-62.9314	0.92202	thr	110.	3980.		
id 1 1 cal	-69.4428	0.95677	thr	120.	3980.		
id 1 2 cal	-73.5535	0.95693	thr	140.	3980.		

• • •

AgataSelector

34

IC calibration: side pads

IC side A 0

No calibration needed

10⁵

10³

10²

Counts

Energy loss (arb. units)

4000

3000

10²

hi da kan da kan seri da taka da kan da k

IC calibration: side pads - implementation

side.conf
<pre>ind_s1 = 0 ind_s2 = 1 ind_s3 = 2 ind_s4 = 3</pre>
<pre>side_A_Threshold_file = threshold/side_A.thres side_B_Threshold_file = threshold/side_B.thres side_C_Threshold_file = threshold/side_C.thres side_D_Threshold_file = threshold/side_D.thres</pre>

threshold/side_A.thres							
# L	OWe	er	and U	pper Thresholds			
99	0	2	160.	4000.			
99	1	2	170.	4000.			

prismaManager.conf

ICSIDES_CAL CALIBRATION/PRISMA/RAW/icsides.cal

CALIBRATION/PRISMA/RAW/icsides.cal

#IC Sides threshold file # Layer A id 0 0 cal 0 1 thr 160. 4000. id 0 1 cal 0 1 thr 170. 4000. # Layer B id 1 0 cal 0 1 thr 160. 4000. id 1 1 cal 0 1 thr 140. 4000. # Layer C id 2 0 cal 0 1 thr 140. 4000. id 2 1 cal 0 1 thr 140. 4000. # Layer D id 3 0 cal 0 1 thr 140. 4000. id 3 1 cal 0 1 thr 120. 4000.

AgataSelector

PrismaFilters
Optional - IC calibration: drift time

Not commonly used but if needed you can calibrate it

IC calibration: drift time - implementation

 	ich.conf	prismaManager.conf ICDRIFT CAL CALIBRATION/PRISMA/RAW/icdrift.ca		
drift_B_Calibration_file = cal/cal_Dr drift_C_Calibration_file = cal/cal_Dr drift_C_Calibration_file = cal/cal_Dr	ift_B.cal ift_C.cal			
drift_A_Threshold_file = threshold/I	ORIFT_A.thres	CALIBRATION/PRISMA/RAW/icdrift.cal		
drift_C_Threshold_file = threshold/f	DRIFT_C.thres	<pre># Layer A id 0 0 cal -0.356814695283694 id 0 1 cal -0.3543057203189 id 0 2 cal -0.36079575685287 id 0 3 cal -0.375224661740377 id 0 4 cal -0.366602920416786 id 0 5 cal -0.348337379200598</pre> 0.000990322166649 thr 0 4096 0.000993092101531 thr 0 4096 0.000972783667404 thr 0 4096 0.000977087690271 thr 0 4096		
threshold/DRIFT_A.thres	cal/cal_Drift_A.cal	id 0 6 cal -0.347610266853692 0.001004150259801 thr 0 4096 id 0 7 cal -0.404315752058997 0 000977464800437 thr 0 4096		
9902140.3980.9912140.3980.9922180.3980.9932180.3980.9942180.3980.9952150.3980.9962150.3980.9972150.3980.9982120.3980.9992120.3980.	99020.1.99120.1.99220.1.99320.1.99420.1.99520.1.99620.1.99720.1.99820.1.99920.1.	<pre>id 0 8 cal -0.363955019538532 id 0 9 cal -0.428651273652748 # Layer B id 1 0 cal -0.350837941799857 id 1 1 cal -0.344210205249724 id 1 2 cal -0.350063027738831 id 1 3 cal -0.359726919632231 id 1 4 cal -0.372374718976808</pre> 0.000971510171444 thr 0 4096 0.000992973984074 thr 0 4096 0.000981597854266 thr 0 4096 0.000980720683648 thr 0 4096 0.000980720683648 thr 0 4096 0.000963487179552 thr 0 4096		

AgataSelector

PrismaFilters

Sorting flowchart

МСР	PPAC TOF	PPAC position	IC pads	IC side	IC drift	Monitors
 X,Y calibration 2D gate 	- Thresholds - Calibration	 Thresholds 2D gates 	- Thresholds - E Calibration	- Thresholds	- Calibration	- Calibration
		- X, Y calibration				

ΔE-E matrix

- Correct Z bands by X,Y PPAC position
- Z identification with gates

A/Q vs X_FP

- Optimize optical parameters
- Align and calibrate A/Q with TOF offsets

E-Rβ matrix

- Include non-measured energy correction
- Q identification with gates

A/Q vs MCP_X/MCP_Y/X_FP

- Correct aberrations

Mass

Recalibrate A/Q and Q

Z selection

Z selection: options

Continuous Z with ZED_LINES (see later)

DE_TYPE

4

Z selection: implementation

total DE_AB : E

ZED_GATE /CUT/PRISMA/ANA/ZED

Warning:

IC pad 0C **is not working.** The Z matrix can have weird features since part of the energy is missing. The following line in the selector.conf can discard events that are in section 0

Optional - Z selection: improved resolution

ICDEAXFP_CORR/CUT/PRISMA/ANA/ICDEA_XFPICDEAYFP_CORR/CUT/PRISMA/ANA/ICDEA_YFP

Optional - Z selection: improved resolution

ICDEAXFP_CORR/CUT/PRISMA/ANA/ICDEA_XFPICDEAYFP_CORR/CUT/PRISMA/ANA/ICDEA_YFP

Continuous Z

Every line centered on the band of a Z For every poiny the distance between neighbouring bands gives Zed

Warning: a graph zed 0 0.root is needed to define a rejection line

Sorting flowchart

Trajectory reconstruction

- Entrance angle from MCP position
- Analytic solution to quadrupole to first order (approximation)
- Dipole field uniform over the volume of the magnet, circular trajectory of radius R
- Propagation until focal plane
- Iteration over R until X_FP matches the measurement

Inputs : X_MCP, Y_MCP, X_FP

Outputs: Radius (Brho), Length

$$\beta = \frac{L}{TOF}$$

$$A/Q = \frac{B\rho}{3.107 \cdot \beta\gamma}$$

Warning: in Prismafilters A/Q is wrong by a constant factor! 47 For converting note that **A_over_q_uncal**_{filters} = **0.9649 a_over_q**_{selector}

Trajectory reconstruction: time alignment

A finer time alignment of the PPAC sections should be done by looking at the **A/Q vs X_FP**

The calibration offsets in /CALIBRATION/PRISMA/RAW/tof.cal should be adapted with the TOF difference that align a selected peak

e.g. A/Q = 3

agataselector/Scripts/Prisma/AdjustTofOffset.C

void AdjustTofOffset(){
double tofOffsets[10];
<pre>tofOffsets[0] = 0.0;</pre>
<pre>tofOffsets[1] = 0.0;</pre>
<pre>tofOffsets[2] = 0.0;</pre>
<pre>tofOffsets[3] = 0.0;</pre>
<pre>tofOffsets[4] = 0.0;</pre>
<pre>tofOffsets[5] = 0.0;</pre>
<pre>tofOffsets[6] = 0.0;</pre>
<pre>tofOffsets[7] = 0.0;</pre>
<pre>tofOffsets[8] = 0.0;</pre>
<pre>tofOffsets[9] = 0.0;</pre>
<pre>double globalTof0ffset =</pre>

A/q: x focal plane (Z = 38)

Use script to adjust the offsets fast and then check with

AnalyzedTree->Draw("newAoq:x_fp>>h(1000,0,1,1000,2,5)","","col")

Trajectory reconstruction: Optical parameters

The **quadrupole magnet** has a length of 500 mm and starts at 500 mm from the target.

In the reconstruction we neglect fringe fields for solving the trajectory analytically.

But the fringe fields are there!

An *effective length* and an *effective position* of the quadrupole should be used to obtain a good reconstruction.

The values should be adapted to different experiments given the different central Brho of the spectrometer

Trajectory reconstruction: Optical parameters

The **Optimizer scan** option is recommended to check what the best values are

The **resolution of the A/Q peaks** varies a lot with these parameters

Trajectory reconstruction: Optical parameters

PRISMA_CONF_QUAD_LENGTHh_Aoverq_tot

PRISMA_CONF_TARGET_QUAD_DISTANCEh_Aoverq_tot

The **Optimizer scan** option is recommended to check what the best values are

The **resolution of the A/Q peaks** varies a lot with these parameters

Sorting flowchart

Q selection

Q separation emerges from combining the info on the **energy** measured in the IC and the reconstructed **Brho**

Usual PRISMA format:

Linear relationship between energy of the ion and R*Beta*(Gamma) that depends on **Q**

Warning: in Prismafilters A/Q is wrong by a constant factor! For converting note that **RBeta_{filters} = 29979.2458*B_dipole*Radius*Beta**

Optional - Non-measured energy correction

(MeV)

Optional - Q calibration

Mass estimated from IC (bad resolution)

Possible to calibrate **IC energy** to MeV

float charge_cal
$$Q = A_E \cdot \frac{1}{A/Q}$$

Continuous charge

ICE_CORR /CALIBRATION/PRISMA/ANA/icecorr_empty.cal

id 5 cal 0 1 thr 0 4096 👞

id 5 is to calibrate the energy to MeV

Q selection: options

Q selection: options

Q selection: implementation

./RunSelector --set_gates can be used

Sorting flowchart

Aberration corrections

- They are **systematic effects** that concern the trajectory reconstruction and would decrease the mass resolution of the spectrometer
- They happen because the magnetic field geometry in the algorithm is approximated by considering **ideal dipoles and quadrupoles**, but can be corrected

Aberration correction: implementation

Sorting flowchart

Mass recalibration

Mass recalibration

Mass recalibration: implementation

$$mass = \left(\frac{A}{q}\right)_{cal} \cdot q_{eff}$$

mass.conf

mass calibration file
cal_file = cal/a_over_q.cal

charge calibration file pattern for each Z
chg_file_base = cal/charge_cal_

cal/a_over_q.cal

1	27	2	-4.293627046	1.020867688
1	28	2	-6.88758004	1.028703071
1	29	2	-2.079466863	1.01723433

cal/charge_cal_28.cal						
99	22	2	0. 1.			
99	23	2	23.02291749	Ο.		
99	24	2	23.9740339	0.		
99	25	2	25.00436437	0.		
99	26	2	0. 1.			

AOQ_CAL /CALIBRATION/PRISMA/ANA/aoverq.cal CHARGE_CAL /CALIBRATION/PRISMA/ANA/charge.cal

CALIBRATION/PRISMA/ANA/aoverq.cal

id	26	cal	0	1
id	27	cal	0	1
id	28	cal	0	1
id	29	cal	0	1
id	30	cal	0	1
• • •				

CALIBRATION/PRISMA/ANA/charge.cal						
id 28	26	cal	25.9	0		
id 28	25	cal	24.9	0		
id 28	24	cal	23.9	0		
id 29	25	cal	24.9	0		
•••						

AgataSelector

PrismaFilters

Mass recalibration

The recalibration was not needed here

Sorting flowchart

AGATA + PRISMA: Doppler correction

AGATA + PRISMA: Doppler correction

Doppler corrected gamma spectra

AgataPrisma/Z28/A60/h_DC_ion_60_28

Warning: if the gammas correspond to a different nucleus, you might have to change the identification (Z gates, Q gates, A/Q calibration)

Cubix software https://cubix.in2p3.fr/

AGATA + PRISMA: Doppler correction

Z28/A60/h DC ion 60 28

Z28/A62/h DC ion 62 28

-7 -10 -3 0.5 ns

-7 -10 -3 0.5

1.333

ns

1.17298

0.004

0.004

.0

0.0

Prisma reconstruction often ends up in good **ID** but wrong **beta**

Recalibration of beta with **TOF_OFFSET** to optimize centroids of DC gamma peaks

AgataSelector Optimizer is great for finding optimal values

AgataPrisma

AgataPrisma

AgataPrisma

PRISMA CONF TOF OFFSET

PRISMA CONF TOF OFFSET

Other geometrical optimization might include:

```
Agata – PHI, Z_SHIFT
Prisma – X_SHIFT, Y_SHIFT, X_SCALE,
Y_SCALE
```

TRANSITION

TRANSITION

TRANSITION

PARAMETER

SCAN

TOF_GAIN

PRISMA_CONF_TOF_OFFSETh_DC_ion_60_28

Acknowledgements

G. Andreetta

E. Pilotto

D. Brugnara

R. N. Del Alamo

J. Dudouet

F. Galtarossa

B. Gongora

J. Pellumaj

Selector Optimization

- Data reduction / selection
- Scanning parameters
- Multiparameter minimization
- Grid search optimization
 - $\circ\,\text{Not}\,\text{well}\,\text{tested}\,\text{yet}$
 - $\circ \, \text{Fine tuning}$
 - \odot See main README.md of agataselector
AnalyzedTree – Prismalnput branch

class Pris	smaInput : pub	lic	Containe
public:			
u_int64	t ts;		
float	monitor 0		
float	monitor 1		
float	mcp_x		
float	mcp y		
float	mcp q		
float	mcp theta		
float	mcp phi		
float	x fp		
float	y fp		
float	tof		
float	ic pads[40]		
float	ice		
float	ic e tot ;		
float	ic_e_corr		
float	ic_e_nm ;		
float	icenm2 ;		
float	ic_de_a		
float	ic de ab		
float	ic_de_a_corr		
float	ic_e_res_corr	;	
float	ic_en1		
float	ic_en1_corr1		
float	ic_en1_corr2		
float	ic_en2		
float	ic_range		
float	ic_mass		
float	ic_drift_a		
float	ic_drift_b		
float	ic_drift_c		
float	<pre>prisma_angle;</pre>		
float	theta		
float	phi		
float	beta		

qamma

loat

float	energy_m		
float	length		
float	radius		
float	brho		
float	rbeta		
float	a_over_q_unca	ι	
float	a_over_q		
float	mass		
float	z_float		
float	zed		
float	charge		
float	charge_cal		
float	q_float		
float	beta_end		
float	energy_end		
float	beta_mid		
float	gamma_mid		
float	energy_mid		
float	brho_mid		
float	theta_cm		
float	phi_cm		
float	beta_cm		
float	brho_cm ;		
uint8_t	a_cn		
uint8_t	z_cn		
float	qvalue		
float	theta_bp		
float	phi_bp		
float	beta_bp		
float	tac_lt_ts		
float	theta_fp		
float	phi_fp		
int	col_nbr		
uint8_t	ic_col_a		
uint8_t	ic_col_b		
uint8_t	ic_col_c		
uint8 t	ic col d		

_uint8_t	ic_a_numpads	;
uint8_t	<pre>ic_b_numpads</pre>	;
uint8_t	<pre>ic_c_numpads</pre>	;
uint8_t	<pre>ic_d_numpads</pre>	;
uint8_t	z_nbr	;
uint8_t	q_nbr	;
<mark>↓uint8_t</mark>	a_nbr	;
uint8_t	x_fp_type	;
bool	mcp_ok	;
bool	tof_ok	;
bool	traj_ok	;
bool	side_ok	;
bool	ic_ok	;
bool	z_ok	;
bool	q_ok	;
bool	a_ok	;

Data reduction

First we reduce the amount of data to use for optimization. The best condition to achieve this is experiment dependent, but usually you:

- Require coincidence
- May require to be in the coincidence peak (reject background)
- Select an energy range

It is not very useful to do a selection for Prisma Raw branch! We are working on a way to select event easily in this case

Example:

...

```
RunSelector --conf selector.conf --nrthr 10 --reduction_cond
"nbSPIDER > 0 && nbCores > 0 && trackE > 900" 628 MB -> 23 MB
```

This will create reduced files in the data folder, with the same name as the old ones with the "red_" prefix. You should then sum them all into one:

```
hadd optData_0000.root Data/run_0034/Out/Analysis/red_Tree_000*
```

OBS: multiple runs can be used

Scan a parameter

- · Choose the spectrum (and transition) to optimize
- Choose the parameter(s) to optimize
- In the "selector.conf", in "OPTIMIZER_CONF" you add both

PARAMETER SPIDER_CONF X_SHIFT 0 -20 20 1 mm SCAN SPIDER_CONF X_SHIFT 0 -20 20 4 mm TRANSITION AgataSpider h_EDC 991.5 3 0.1 0.5 keV ONLY_SCAN YES

• Run the selector (scans in file "out.root")

RunSelector 9999 --conf selector.conf \ --nrthr 1 --verb -1 --only_enabled_histos \ --optimize

OBS: "only_enabled_histos" option activated, you should modify accordingly the file "Conf/enabled_histos.conf" #PARAMETER |detector|par_name|initial_value|min|max|step|
#SCAN |detector|par_name|initial_value|min|max|step|
#TRANSITION |folder|spec_name|centroid|sigma|tail|bias|
#optional

SPIDER CONF X SHIFTh EDC

Fit with multiparameter optimization

• Similar notation to scan:

PARAMETER SPIDER_CONF X_SHIFT 0 -20 20 1 mm PARAMETER SPIDER_CONF Y_SHIFT 0 -20 20 1 mm PARAMETER SPIDER_CONF Z_SHIFT 0 -20 20 1 mm TRANSITION AgataSpider h_EDC 991.5 3 0.1 0.5 keV

• Run selector with "debug canvas" option

RunSelector 9999 --conf selector.conf \ --nrthr 1 --verb -1 --only_enabled_histos \ --optimize --debug_canvas

- If fits are not good, you change parameters in file "Conf/Optimizer/parameters.dat"
- Once fits are good, run optimization without option "debug_canvas" option

RunSelector 9999 --conf selector.conf \ --nrthr 1 --verb -1 --only_enabled_histos \ --optimize

• While it is running, you can monitor with

tail -f Conf/Optimizer/log.txt

• At the end output file is run with best parameters

Cost function

The cost function takes into account many factors:

- The fitted energies
- The fitted sigmas (+ tails)
- The reference energy
- The bias on each transition
- The number of non-converging fits
- A weight factor

$$C = (1 - W) \sqrt{\sum_{i=1}^{N} (\mu_i - \epsilon_i)^2 \cdot b_i} + W \sqrt{\sum_{i=1}^{N} \tilde{\sigma_i} \cdot b_i} + N_{nc} C_{nc}$$
$$\tilde{\sigma_i} = \sigma_i + \tau_{l,i} + \tau_{r,i}$$

Cost function

Keywords:

TAIL 0# 0: notail, 1: right, 2: left, 3: left+right, 4: symmetricNON_CONVERGENCE_COST 5# Multiplier cost for fits that did not convergeSIGMA_WEIGHT 0.5# 0 for pure centroid optimization, 1 for pure width optimization

$$C = (1 - W) \sqrt{\sum_{i=1}^{N} (\mu_i - \epsilon_i)^2 \cdot b_i} + W \sqrt{\sum_{i=1}^{N} \tilde{\sigma_i} \cdot b_i} + N_{nc} C_{nc}$$
$$\tilde{\sigma_i} = \sigma_i + \tau_{l,i} + \tau_{r,i}$$

Additional files

File: Conf/Optimizer/parameters.dat

FIT_PAR_FILE parameters.dat #Name of parameter file

idx:0

name : init_val min max fixed Ampl_0 1.000000e+04 0.000000e+00 1.000000e+08 0 Mean_0 9.915000e+02 9.865000e+02 9.965000e+02 0 Sigma_0 5.000000e+00 1.650000e+00 1.500000e+01 0 Tau_left_0 1.000000e-04 1.000000e-03 1.000000e+01 0 Tau_right_0 1.000000e-04 1.000000e-03 1.000000e+01 0 pol_0 0.000000e+00 -1.000000e-01 1.000000e-01 0 pol_1 0.000000e+00 -1.000000e-01 1.000000e-01 0 min_max 9.665000e+02 1.016500e+03 File: Conf/Optimizer/log.txt

LOG_FILE log.txt #Name of log file

OBS: If not present it's created, otherwise it's read

Final remarks on optimization

You can should play with hyper-parameters

...

ALGORITHM Simplex # Name of algorithm (Migrad, Simplex,...)
MINIMIZER Minuit # Name of minimizer (Minuit/Minuit2, Fumili, GLSMultiMin, Genetic)
BKG_POL_ORDER 1 # Polynomial order for background
MAX_CALLS 1000 # Maximum number of minimizer calls
TOLERANCE 0.1 # Minimizer tolerance
PRECISION 0.01 # Minimizer precision (likely leave 0 for optimally calculated value)
USE_INTERVALS NO # Use intervals in minimization (try what is best)
VALID_ERRORS NO # Performs error analysis (e.g. run Hesse for Minuit)