Introduction to ancillary analysis

Daniele Brugnara

How is the workshop structured: Wednesday

How is the workshop structured: Thursday

Handling the RAW data

- The DAQ that runs online (xDaq) consists of some actors that handle different tasks.
- Each actor can write data to disk

Handling the RAW data

- It can happen that one of the actors of the daq is overloaded during experiment and stops the data flow
- This can happen for the actor that builds events if there is a sudden increase in rate in one of the channels
- This is usually due to a mistake on the experimental side
- Nevertheless the data CAN be recovered by reading the output of the readout unit
- Another reason cold be to change the parameters for the PSA of the ancillaries

Possible issues and how to solve them

Coincidences stop at some point	Online building problem		
Loss of statistics	Online building problem		
Multiple peaks	Ancillaries or cores not aligned	Align with genconf.py or ReadCaenRaw.set	Run ReadCaenRaw and femul
Exponential shape	The global time offset is wrong	Find the coincidence peak as	
No peak	There is no global offset	Scripts/TimeOffsetPeak	

ReadCaenRaw: how to run and how to configure

- Configuration file-based program
- One needs to set:
 - Time window
 - Digitizer board informazion
 - Timestamp offset
 - Minimum fold
- Can also output root files for the selector

<pre>daniele@MacBookPro AncMerging % ./ Usage: ./ReadCaenRaw [OPTIONS] Options: help, -h root <outputrootfilename> global-anc-tsoffset <value> nrevts <value> prisma <file1> [file2]</file1></value></value></outputrootfilename></pre>	ReadCaenRaw Show this help message and exit Specify the output root file name Set the global ancillary timestamp offset (double) Set the number of events to process (integer) Specify one or more input Prisma files
input <file1> [file2] adf <outadffilename></outadffilename></file1>	Specify one or more ancillary input files Specify the output ADF file name
Example:	
./ReadCaenRawlabrslaveroot dante 5prisma adf output.adf_	output.rootglobal-anc-tsoffset 1.5nrevts 100 \ prisma1.dat prisma2.datinput anc1.dat anc2.dat \

🕒 ReadCae	enRaw.set_labrprisma 🔓 825 B
1	#window: width of the time window used for the event building (in ns)
2	window 500
3	
4	#boardDef:
5	# arg 1: boardId
6	# arg 2 :boardVersion(V1725/V1730==1 - VX2740 ==2)
7	# arg 3 :number of channels
8	# arg 4: FWVersion (PHA or PSD)
9	# arg 5: ns per timestamp
10	# arg 6: ns per sample
11	# arg 7: data key: 0xFA0201A2 = SPIDER ; LABR = 0xFA0201A5 ; DANTE = 0x
12	board 1 1 16 PSD 2 2 labr
13	
14	#minFold:
15	# arg 1: detector
16	# arg 2: minFold for this detector
17	# arg 3: keep only events if coincidence with other board
18	mintola 1 U
19	the second second time of fact
20	# DOARD CHANNEL TIMEUTTSET
21	
22	tsoffset 1 2 130
23	tsoffset 1 2 130
24	t = 0
25	t = 150
20	tsoffset 1 6 130
28	tsoffset 1 7 130
20	

The selector project

- High level analysis based on configuration files
- The analysis procedure is common to all experiments and there is little benefit of repeating the same steps over and over
- The code was created for the near-line analysis and has since evolved with more refinements with full analysis capabilities
- The user is expected to take a look at the code and check the output data
- The nearline analysis is a great STARTING point and can be recalled with a simple *git clone*

The starting point

- Femul produces a root file containing MANY leaves
- The selector allows us to have a common code debugged over several experiments
- This also means that sometimes some changes/improvements are made and could break backward compatibility (for instance for the configuration file).
- The README.md file in the root directory, as well as other ones serve as a first documentation
- We try to log on the CHANGELOG.md significant changes in different versions
- Current supported detectors:

AGATA PRISMA SPIDER EUCLIDES DANTE LABR₃ SAURON (S1) OSCAR EXOTIC'S MCPS

Reproducibility

- The output files contain the parameters used to generate it:
 - The entire selector.conf
 - The git hash
 - The date of creation
- This means that the analysis can be reproduced simply by printing the selector.conf used for this specific file and checking out the correct hash
- It is also citable with a DOI:

DOI 10.5281/zenodo.8329198

Structure of the selector.conf

KEYWORD | value(s) | unit of measure | comment

Detectors considered in the analysis

Configuration of the folders, the file patterns, and the TTree names

Configuration of the reaction, multiple ions of interest can be added

Target thickness and rotations, used for energy loss calculaitons. The presence of a degrader before or after the target is also possible.

#Configuration file f	for the sel	ector	6		
#Format: KEYWORD #Comments are janored	value(s)	Unit of	f measure	e I Comm	ient I
#					
¥					
DETECTORS_PRESENT		10			
	NO	NU #	#	D	Euclides is present TES/NU
KISMA	NU	#		Prisma	is present YES/NU
JANTE	NU	#		Dante	IS present TES/NU
	NU	#		Labr 1	s present tes/NU
SPIDER	NU	#		Spider	is present res/nu
AGATA	NU	#		Адата	is present TES/NU
4					
		onghla	d histos	conf	# File name with list of eachlod histograms
		Trackler	a_niscos.	. com	# File name with list of enabled filstograms
NEE_NAME		Treemas	ster	#	Input tree name
DUM_FILE_PAITERN			Sum	#	Added file pattern
JUI_FILE_PAITERN		Tnoo	run_ #	#	Input file pattern
IN_FILE_PAITERN		rree_	#	#	Paplay directory nettorn
CEFLAT_DIK_FATTERN		/0+ /A.	run_	#	The set of the set
		/Conf	#	#	Panlay conf folden nath
		./Com	#		
	(Data	./out	#	Toput	output path
#	./bucu	# 			
#					
REACTION_CONF					
REACTION_POSITION			0.5	#	Position of the reaction in the taget 0->front 0.5->middle, 1->bac
ENERGY	0	MeV			Beam energy
TARGET	11	#			Target ion A Z
BEAM	11	#			Beam ion A Z
ION	11	#			Fragment of interest for binary reaction calculation: A Z (those detected)
#					
#					
TARGET_CONF					
DEG_DISTANCE		0	um		Degrader distance in um
DEG_THICKNESS		0	mg/cm2		Degrader thickness in mg
ROTATIONZ		0	deg		Target rotation on the Z axis in degrees
ROTATIONX		0	deg		Target rotation on the X axis in degrees
TILT	0	deg			Target tilt in degrees; Negative values for clockwise rotations
THICKNESS		0	mg/cm2		Target thickness-density in mg/cm2 or units alike
DEG_PRESENT		NO	#		Degrader present YES/NO
DEG_MATERIAL		none	#		Degrader material
MATERIAL		none	#		Target material
DEG_POS	AFTER				Degrader position BEFORE/AFTER
4					

Lookup Tables

- The default LUTs can be found in User/EXP/Template/Conf/LUT/.
- The name of a channel+board combination is important for the analysis
- Generally, they allow to add an energy threshold (low, high), a time offset for alignment, and a N-degree polynomial calibration
- The remaining parameters are detector dependent and include angles or positions in space

🕒 LUT_LA	BR.dat	🐴 1.16 KiB												Edit	· Ĉ 2	⊾
1	#LaBr	Co+Cs														
2	#board	(V1730)	channel	map	name	thr_lo	thr_hi th	eta phi	Time	Offset	npar_gl p0_q	l p1_q2 np	ar_q	s p0_qs	p1_qs	
3	1	Θ	0	DO	Θ	16000	90.422684	124.92098	0	2	-8.590549465	0.5683940043	2	-16.614	035 0.584031	
4	1	1	1	D1	Θ	16000	84.308418	97.489398	0	2	4.994643769	0.441859949	2	10.570262	0.443247	
5	1	2	2	D2	Θ	16000	90.572804	73.768608	0	2	-4.882700373	0.4567364497	2	-9.782321	0.473778	
6	1	3	3	D3	Θ	16000	99.968116	51.748253	0	2	-2.68135951	0.4616749283	2	-9.040133	0.473527	
7	1	4	4	D4	Θ	16000	93.353077	26.901224	0	2	-3.368474921	0.4774816369	2	0.609657	0.481297	
8	1	9	9	D5	Θ	16000	94.007297	1.3778600	0	2	Θ	1	2	Θ	1	
9	1	5	5	D6	Θ	16000	99.883486	-28.723198	0	2	10.52197059	0.4435828877	2	18.918459	0.444711	
10	1	6	6	D7	Θ	16000	86.180070	-45.908423	0	2	12.53667474	0.4240481389	2	28.411274	0.421525	
11	1	7	7	D8	Θ	16000	91.699165	-66.505287	0	2	16.78408614	0.3897415818	2	35.049303	0.387539	
12	1	8	8	D9	Θ	16000	85.591641	-95.344627	0	2	-12.39452343	0.4289130669	2	-38.673472	0.452371	
13	######	####														
14	1	15	15	monitor	Θ	16000	0		0	0	2 0	1	2	Θ	1	
15																
16																

The UserSelector

- If a part of the analysis is of general interest, it should be added to the regular part of the code under src/Selector
- However, in many cases some things are experimentspecific and can be handled by the UserSelector
- The experiment specific part is set at compile time

```
h UserSelector.h 🖺 790 B
           #pragma once
        1
           #include "AgataSelector.h"
           class UserSelector : public AgataSelector {
        5
             public:
               UserSelector(const std::string& options) : AgataSelector(options){};
        7
               virtual Bool_t Process(Long64_t entry) override;
        8
               virtual void
                              SlaveBegin(TTree* tree) override;
       0
               virtual void SlaveTerminate() override;
      10
      11
             private:
      12
               // USER variable and histogram definition section
      13
      14
               unsigned long long oldTS{0};
      15
               unsigned long long initTS{0};
      16
               int
                                  runNr{-1}:
      17
               int
                                   counter{0};
      18
               double
                                  totCR{0};
      19
               double
                                  aliveT{0};
      20
      21
               struct UserHistograms {
      22
                   std::vector<TObject*> ptrs;
      23
                   TDirectory *dir{nullptr};
      24
                   TH1D* h_alive_time = nullptr;
                   TH1D* h_avqCR
                                       = nullptr:
                 userHistograms;
      Ζ6
      27
      28
```

Prisma

Typical performance				
•	Z resolution: ~ 1/60			
•	A resolution: ~ 1/300			

The analysis of PRISMA

- The analysis can be handled by the Prismafilters+prisma library or by the selector
- The outcome is EQUIVALENT
- The analysis with the selector allows for more automated optimization procedures and adds some more corrections/improvements
- If the PRISMA analysis is concluded and one is satisfied with it, there is no need to repeat it with the selector
- The selector can take the already analyzed prisma data of the prisma library and just perform the remaining steps of the analysis

Prisma analysis schematics

The optimization procedure

- Remarkable improvements are possible with the automatic optimization but are experiment dependent.
- There are two ways to perform it:
 - Multiparameter minimization
 - Scans of a single parameter

Background subtraction and other features

- The selector has a background subtraction option that can really improve the results in some cases
- Other things to check/features are the energy loss evaluations and kinematic reconstructions

General remarks

- You are welcome (and encouraged) to use your one data for the workshop, this will help you to debug issues and ask us questions
- You will be exposed to detectors you might not be interested in at the moment, but it's good to know they exist for proposals/ideas
- Ask questions during the talks, let's keep it informal