Tracking Meeting at Lyon - CC
Patrice Lebrun October 30, 2024

iP2i Tracking Apollonius in ICEDUST

SOFTWARE 1 1p2t

| A New Track/Hit Finding Approach

= Apollonius' problem extended to a Full Stereo Drift Chamber
= The method is described in the ArXiv https://arxiv.org/abs/2401.045/6

= Uses Julia programming Language

Given a stereo wire numbered i defined by the stereo angle 7;. the intersection coordinates
2= = of the stereo wire in a chosen transverse plane and the wire projection angle ¢.; in
this plane, the signed drift distance &* to this wire i satisfies the equation (2) (see Appendix
A):

9 2

(2 —2e) + (™ —ve) = (R+ &) =0, 2)

where the expression of d**, function of the stereo wire i and the helix parameters, is
given in the equation (A.5b). The absolute value of reconstructed signed drift distance d**
can be interpreted as the radius of a circle with the center coordinates (z**.y**) in the
chosen transverse plane. This circle is tangent to base circle of the helix and therefore can
be use in the Apollonius’ problem [2].

Wilfrid da Silva, Patrice Lebrun,
Jean-Claude Angélique, Luigi Del Buono

76v1 [hep-ex] 9 Jan 2

5

arXiv:2401.04

GPU-accelerated Interval Arithmetic to solve the Apollonius
Problem applied to a Stereo Drift Chamber

Wilfrid da Silva®, Patrice Lebrun®, Jean-Claude Angélique®, Luigi Del Buono®)

A7 s 7 TSI, CRRS N, & e, DN 7080, T i, rrance

b Unyfersité de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis
de Lyon, UMR 5822, Villeurbanne, France

“Unwersité de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen, UMR6534, Caen, France

Abstract

We propose a new system of equations which identifies the helix common to all drift distance
hits produced by a full stereo drift chamber detector when a charged particle passes through
this detector. The equation system is obtained using the Apollonius’ problem as guideline
which gives it a very simple form and a clear physics interpretability as the case of full
axial drift chamber detector. The proposed method is evaluated using drift distance hits
constructed from Monte Carlo-generated helix trajectory tracks. The equation system is
solved using a robust accelerated GPU brute-force algorithm based on interval arithmetic.
All code is written using the Julia programming language.

Keywords: Apollonius’ problem, Stereo Drift Chamber, Track Reconstruction, Hit Finding,
Interval Arithmetic, Julia Programming Language, GPU.

1. Introduction

The problem studied in this paper is the identification of a helix from a set of drift distance
hits given by a Full Stereo Cylindrical Drift Chamber (FSCDC). The search for a helix in a
drift chamber with a noisy or non-noisy data set has a long story in particle physics [1].

The idea of applying the Apollonius problem [2] to the search for tracks in an axial drift
chamber is not new [3]. This problem is used as guideline to find one equation which satisfy
the drift distance hits produced by helix trajectory in a full stereo drift chamber. However, to
the best authors’ knowledge, this is the first time that the problem of Apollonius is generalised
to a FSCDC by taking into account the stereo angle of the wires.

Using a classical root-finding solver in order to recover the helix parameters by solving the
system of equations deduced from the Apollonius’ problem and applying it to each subset of
five hits has some disadvantages like the non-convergence of the calculation without a good
initial estimation of the solution and also the total computing time increases exponentially
bv exhaustivelv checking all subsets.

SOFTWARE

https://arxiv.org/abs/2401.04576

Goal and why Julia

Find signal hits and tracks in a noisy environment with the lowest possible
processing time and using common computer hardware like GPUs

Improve efficiency of other methods.

Julia is a high-level, high-performance dynamic language for scientific and
technical computing.

2 Allows an easy use of GPU with available powerful mathematical packages
0 Julia performance is identical to C/C++
2 Main packages for achieving this goal:

CUDA.jl (Nvidia)

IntervalArithmetic.jl

0 Useful Functionalities:
Managing Packages (Pkq) (installation, versioning, compatibilities, ...)
Embedding into C/C++
Broadcast and vectorization
Functions with Full dispatching
Garbage Collector (GC)

SOFTWARE 3

https://docs.julialang.org/en/v1/
https://cuda.juliagpu.org/stable/
https://juliaintervals.github.io/IntervalArithmetic.jl/stable/
https://pkgdocs.julialang.org/v1/
https://docs.julialang.org/en/v1/manual/embedding/
https://docs.julialang.org/en/v1/base/arrays/#Broadcast-and-vectorization

illustration: event with noisy hits

Event Number: 15 (hspMin: 0.0, noise: 2500 hits, iteration: 3, threshod: 1)

Radius = drift distance
750 - ot S
.° %
o, - o o . o ° °°o
o .'5%0‘& 9% O%: 0 %9 0, &
D g 2 o NeJ
> o.°‘;>°.o . 33000 %0 & 82 .cg’;’o‘
500 &® 5% %0 05°* : °°'-Q<‘:;9Z°€’
q‘? % o0,
%S 2 o
; e
E "o
] o
250 Ny
0
-250 -
1000 750 500

X(mm)

Y(mm)

Event Number: 15 (hspMin: 0.0, noise: 2500 hits, iteration: 3, threshod: 1)

1000 - - - apollonius circle
® xc,yc, R= (-294.5, 293.5, 338.5)
Asign= 1.0 (pz=13.2 MeV)
— Signal Unselected
Noise Unselected
750 —— Signal Selected
— Noise Selected
----- Aluminium disks
500
250
0 -
-250
T T T T T T
-1000 -750 -500 -250 0 250

X(mm)

Processing Time on NVIDIA V100: 2.55 ms/hit

Yao’s event

with 2500 hits of noise randomly distributed

= The signal has 89 hits
= 72 hits found (81%)
=1 hit of noise selected

+«— Added using Toy CDC.|l
(our own Julia package
to simulate the CDC)

abeyoed |[anepoiien /m 1od

SOFTWARE 4

Development and Testing with Jupyter Notebooks

n
I

2 Example with a starting part of

a Jupyter notebook

here is shown the nformation on
packages and type of GPU
used.

0 More about Julia:

Compilations Just In Time (JIT)
based on LLVM.

Very easy to install (and uninstall)

Open source with a large
community (but << Python)

JuliaHEP community

Good documentation
https://docs.julialang.org/en/v1/

Wikipedia: LLVM is a set of compiler and toolchain technologies[4] that can
be used to develop a frontend for any programming language and a backend
for any instruction set architecture.

ES

[Z2]:

H O » m ¢ » Code v 0 - 0 ® st
import PKg

Pkg.activate(".")
Activating project at "~/comet/WilliamProject’

Pkg.add(path="/pbs/home/1/lebrun/comet/dev_julia/Toy_CDC")
Pkg.add(path="/pbs/home//lebrun/comet/dev_julia/NewApollonius")

Pkg.status()

Status "~/comet/WilliamProject/Project.toml’
[b5@87e648] NewApollonius v1.8.0-DEV " /pbs/home/l/lebrun/comet/dev_julia/NewApollonius#main’
[7617a686] Toy_CDC v1.8.8 "/pbs/home/l/lebrun/comet/dev_julia/Toy_CDC#newGeometry’

Pkg.status(;mode=Pkg.PKGMODE_MANIFEST, outdated=true)

Status "~/comet/WilliamProject/Manifest.toml’
[79e6a3ab] Adapt v3.7.2
[4fba245c] ArrayInterface v7.5.1
[ab4f@b2a] BFloatlés v@.2.0
[fa961155] CEnum v@.4.2

* [@52768ef] CUDA v3.13.1
[6aB6dc24] FiniteDiff v2.22.0

v

[052768ef] CUDA v3.13.1

[0c68f7d7] GPUArrays v8.8.1 i i
[46202085] CPUAITESSCore V8.1, Pinned Verspn to use.old GPU K80, the
[61eblbfa] GPUCompiler v8.17.3 only one available on jupyterlab

X [83353500] o3 vOAAT (0 ardd) New more powerful GPUs will be available
(929cbde3] LLWM v4.17.1 in sept. (last version of CUDA will be used).

* [b8f27783] MathOptInterface v1.29.0

* [43287f4e] PtrArrays v1.1.9

* [91¢51154] SentinelArrays v1.4.2

~ [9@137ffa] StaticArrays v1.9.3

* [a759f4b9] TimerOutputs v@.5.23
[dad2f222] LLVMExtra_jll v0.0.18+8

* [f5@d1b31] Rmath_jLll v0.4.0+0

import CUDA

CUDA.versioninfo()
CUDA.devices()

CUDA toolkit 11.7, artifact installation
NVIDIA driver 465.19.1, for CUDA 11.3
CUDA driver 11.3

Libraries:

- CUBLAS: 11.10.1
- CURAND: 10.2.10
- CUFFT: 10.7.2

- CUSOLVER: 11.3.5
- CUSPARSE: 11.7.3
- CUPTI: 17.0.0

- NVML: 11.0.0+465.19.1

- CUDNN: 8.30.2 (for CUDA 11.5.0)
- CUTENSOR: 1.4.0 (for CUDA 11.5.8)

Toolchain:

- Julia: 1.8.5

- LLWM: 13.0.1

- PTX ISA support: 3.2, 4.0, 4.1, 4.2, 4.3, 5.0, 6.0, 6.1, 6.3, 6.4, 6.5, 7.0, 7.1, 7.2

- Device capability support: sm_35, sm_37, sm_5@, sm_52, sm_53, sm_6@, sm_61, sm_62, sm_70, sm_72, sm_75, sm_80, sm_86

1 device:
@: NVIDIA Tesla K80 (sm_37, 11.178 GiB / 11.173 GiB available)

CUDA.Devicelt tor() f 1 devi :
0. mﬁﬁcisf;a.@g or - dewees > 0. NVIDIA Tesla K80

SOFTWARE S

https://docs.julialang.org/en/v1/

Who

= Tracking_Apollonius Development :
0 Wilfrid da Silva < —>
a0 Patrice Lebrun :

“ Integration in ICEDUST

. Imperial College
0 Patrice Lebrun < : > Per Jonsson

Roden Deverni

Julia World i C++ICEDUST World

SOFTWARE 6

Algorithm Based on Interval Arithmetic with GPU

Multi-dimensional grid

(4-Dim) Accumulator (vote)

;
Xc Yc R Zo

Apollonius
Function

[198f0, 216f0] x [36f0, 54f0] x [321.562f0, 339.375f0] x [375f0, 450f0] > - [-0.12f0, 5.340] | if 0 is in the interval

| |
| |
| |
| GPU
: ololololololololo The function is :
| _ _ applied on all cells
: Foragivenhit | 0/0|0|0 /0]|0|0]|0]|O0 in the "same time » |
! Wire positions 011 for a given hit !
! G-PU// Drift distance 0l0/0 0] 1]1 0 !
1 Pixel 0lolol 1111 olo !
I (cells) '
: 0/0/ofo[1/1]|1]0]0 !
: Aoolion o/ojolo]4/o]o]o]oO i
I Foogor 10/ 100 0/ 1]0/0]0 I
| |
: - (vectorisation 0/0]0]0 0000 _; :
| / Apollonius.(grid) oOlo/0ol0O|0|0O|0]O0O]|O |
| |
| |
|

|

|

|

|

‘Acc.umu.lato'r Xe CPU
e 22118 - Yc
1323132 ... Barycentre R

(on a selection of cells)

223232 =
- [19122) - Hits finding
4 -

Sum of votes

. Loop on all hits:
: Probability Indicator

|

|

|

|

|

|

|

Zo :
|

|

|

|

on each hit :
|

SOFTWARE 7

[terative Method

The cells having a number of votes greater than a given value
are selected (>MAX-threshold) and subdivided to create a new grid.

Next iteration 'y

The first grid for the first iteration has to cover all
the allowed parameter space.

Example: 3 iterations (units: mm, MeV)

E=104.97
dE = 1.0e-5

intervals=[interval(-504.0, 504.0), interval(-504.0, 504.0), interval(87.0,

375.0), interval(0.0, 1500.0), interval(E-dE, E+dE)],
gridSubdivisions=[

(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellskE = 1),

(ncellsX=4, ncellsY=4, ncellsR=4, ncellsZ=4, ncellsE=1),
(ncellsX=4, ncellsY=4, ncellsR=4, ncellsZ=3, ncellsE=1)]

With this configuration, the first grid has 2143260 cells.

Constraining the trajectory to be in the stopping target, the number of
cells is reduced to 661620.

Number of cells in next grids depends on the event.

In the last grid, cell size : 1 x1x1x4.2 mm4.

Hit finding consists to find hits having a solution in the selected cells (cells with value > threshold).
Only hits selected at the previous iteration are used for the next iteration.

Time processing is roughly proportional to the number of hits (more noisy hits less time processing/hit)

SOFTWARE 8

S|182 JO Ual||iq ¢€ ~ Yyum
plIb a|buls e 0] JusjeAinbg

Parameters

Can only be modified by a Tracking_Apollonius package expert

a |t could be necessary to decide whether some of them can be modified by ICEDUST
users.

To use GPU in single or double precision:
"precision" => Float32,

Value of the uniform Magnetic field used by Apollonius
"magneticField" => 1.0f0,

If no cells has a number of votes greater or equal to this limit, the accumulator is empty (no track found).
"vote_min" => 15,

At each iteration, a set of thresholds is defined.

The highest value is used to select cells to create the grid for the next iteration.

A set of hits found correspond to a threshold (each threshold is associated to a probability to be a hit of
signal).

A hit is found when it belongs to a cell with a number of votes > MAX(votes)-threshold

"thresholds_iter" => [[9], [1, 3, 5, 71, [1, 2, 3, 4, 511,

Apollonius circle values are obtained with the cells having a number of votes > MAX(votes)-threshold_results.
For instance here, only the cells with the maximum of votes are used.
"threshold_results" => 1

Possible values domain of the Apollonius helix (Xc, Yc, R, Z0 and E)
"intervals" => IntervalArithmetic.Interval{Float32}
[[-504f0, 504f0], [-504f0, 504f0], [87f@, 375f0], [0f0, 1500f0], [104.969f0, 104.971f0]],

Defines the cells size for each iteration (number of cells in each dimension).
"subdivisions" => @NamedTuple{ncellsX::Int64, ncellsY::Int64, ncellsR::Int64, ncellsZ::Int64, ncellsE::Int64} [

(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1),

(ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 4, ncellskE = 1),

(ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 3, ncellskE = 1)]

Position of the projection plane ‘\\\\\

"ZProj" => —791.2263 P better to choose 1 (12.5 mm) or 2 (6.25 mm) ?

Is 4.16 mm not too small ?

SOFTWARE 9

Performance

Yao’s events Run001 (no noise added)
0 Number of events: 6754
0 Qverall Total Number of Hits: 470710

0 3.2 ms/hit on 1 device of NVIDIA V100 in single precision (this time per hit decreases
when the number of noisy hits increases).

0 Resolutions [mm] (assuming a 1 Tesla uniform magnetic field).

Mean RMS
XCc—-XcO® -0.95 7.71
yc-yc@ -1.55 8.53
R-R0O 0.67 10.09

0 Resolutions [mm)] for differences lower than 20 mm in absolute value

Mean RMS #events
XCc-XcO® -0.74 4,89 6629 (98.1 %)
yc-yc@d -1.09 5.73 6552 (97.0 %)
R—-R0O 0.13 5.33 6478 (95.9 %)

0 Efficiencies:

Number of hits not found (hit not in the accumulator):
O 22401 (4.75 %)

Number of hits found with the Highest Probability to be a hit of signal (hit in cells with maximum of
votes):

0 420068 (89.24 %)

SOFTWARE 10

Tracking Apollonius in ICEDUST (1)

ICEDUST externals source LFS
2 Official Julia binary Release

2 it's not recommended to use an own build of Julia (CUDA. jl)
Currently JULIA/julia-1.10.5-linux-x86_64.tar.gz (64 bits)
Other releases are available for many architectures and OS: https://julialang.org/downloads/

ICEDUST _externals_install
a julia-1.10.5-linux-x86_64 [bin etc include lib libexec LICENSE.md share]

ICEDUST packages

2 oadJulialnterface (can be used for other Julia project)
Goal: ICEDUST user does not need to know Julia
C++ class with members to call some Tracking_Apollonius functions (currently)
Tracking_Apollonius is a submodule

Tracking_Apollonius has to be a git repository to be used by the package manager of Julia
0 Meaning Tracking_Apollonius can be used also in a pure Julia environment (important for development)

ICEDUST _install
0 julia_depot directory where all packages and artefacts are installed (~2.7 Go)

2 Shared library lib/liboadulialnterface.so and setups and executables for testing are in
oadJulialnterface/bin

0 Setup.sh is updated

SOFTWARE 11

https://julialang.org/downloads/
https://gitlab.in2p3.fr/Patrice/ICEDUST_packages/-/tree/master/oaJuliaInterface?ref_type=heads

Tracking Apollonius in ICEDUST (2)

Use embedding Julia in C/C++

o Simple functions are defined in Tracking_Apollonius to be easily called by ICEDUST,
avoiding to have very sophisticated C/C++ code to write.
Limited to Array and Structure with leaf types (Int, float, double, bool ...)

Build procedures (new when red)
o |CEDUST _externals_install

git clone git@gitlab.in2p3.fr:Patrice/ICECDUST_external_sources_LFS.git
cd ..; mkdir ext_build; cd ext_build
cmake -DBUILD_JULIA=TRUE -DBUILD_GEANT4_VERSION=4.10.6 ../ICECDUST_external_sources_LFS
make -j4
) ‘Patrice’ is temporary, it should be comet (hoping so)

a0 ICEDUST _install
build has to be done on machine with GPU (the use of docker is underway).

git clone git@gitlab.in2p3.fr:Patrice/ICEDUST_packages.git
cd ICEDUST_packages
git clone git@gitlab.in2p3.fr:Patrice/Tracking_Apollonius
cd ..; mkdir build; cd build
cmake -DBUILD_JULIA=TRUE -DBUILD_GEANT4_VERSION=4.10.6 ../ICEDUST_packages
make -j4
Notes:

git clone ——-recurse-submodules git@gitlab.in2p3.fr:Patrice/ICEDUST_packages.git
will replace the two git clone commands when julia will be able to use submodules
(a patch is available but not yet applied).

SOFTWARE 12

Testing

Two executables are available in oaJulialnterface/bin for testing and measuring
time performance

0 1st Test (time Testoadulialnterface)

check the result of Tracking_Apollonius with a sample of hits
Measure the initialisation time

0 2st Test (time TestoadulialnterfaceLoop <int>)
to measure processing time per hit

2 The sources are in ICEDUST _packages/oadulialnterface/app
Could be used as example to use the interface.

SOFTWARE 13

ICEDUST install/oaJulialInterface/bin$ time Testoalulialnterface
TestoaluliaApollonius:
Initialization of Julia (has to be done only once).

Activate Apollonius project: import Pkg; Pkg.activate("Apollonius"; shared=true); using Tracking_Apollonius ;(E;

Activating project at “~/comet/ICEDUST/ICEDUST install/julia_depot/environments/Apollonius’ l‘
Module Ptr: ©xl4a5feadb910
call init_apollonius() ... es
Start init_apollonius ’O
Precision: Float32 (I
Magnetic Field: 1.0 Tesla I
Grid Init: pll
[-504f0, 504f0] x [-504f0, 504f0] x [87f@, 375f0] x [0f0, 1500f0] x [104.969f0, 104.971f0] [
(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1)
cu_array length: 2143260
cu_array constraint length: 661620

Dict{String, Any}("thresholds_iter" => [[9], [1, 3, 5, 71, [1, 2, 3, 4, 511, "magneticField" => 1.0f@, "iterations" => 3, "zProj" => -791.626, "intervals" =>
IntervalArithmetic.Interval{Float32}[[-504f0, 504f0], [-504f@, 504f0], [87f@, 375f0], [0fe, 1500f0], [104.969f0, 104.971f0]], "pivot" => Float32[0.0, 0.0], "precision" => Float32,
"subdivisions" => @NamedTuple{ncellsX::Int64, ncellsY::Int64, ncellsR::Int64, ncellsZ::Int64, ncellsE::Int64}[(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1), (ncellsX
= 4, ncellsY = 4, ncellsR = 4, ncellsZ = 4, ncellsE = 1), (ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 3, ncellskE = 1)], "vote_min" => 15, "divideandconquer" => true)

End init_apollonius

Apollonius is functional: 0

init_apollonius done

The status returned by apollonius.init() is: @

CUDA runtime 12.6, artifact installation
CUDA driver 12.6
NVIDIA driver 550.54.15

CUDA libraries:

- CUBLAS: 12.6.3

— CURAND: 10.3.7

- CUFFT: 11.3.0

— CUSOLVER: 11.7.1

— CUSPARSE: 12.5.4

— CUPTI: 2024.3.2 (API 24.0.0)
- NVML: 12.0.0+550.54.15

Julia packages:

- CUDA: 5.5.1

— CUDA_Driver_jll: 0.10.3+0
— CUDA_Runtime_jl1l: 0.15.3+0

Toolchain:
- Julia: 1.10.5
- LLVM: 15.0.7

1 device:
0: Tesla V100-SXM2-32GB (sm_70, 31.237 GiB / 32.000 GiB available)

From get_structure: length of jl_hits_drifts: 146

Xc, Yc, R, Z0 values: -96.500000, -311.500000, 342.500000, -35.375999
RMS of Xc, Yc, R, Z0 values: 0.288675, 0.288675, 0.288675, 4.336767
Vote max, number of cells values: 62, 2

sign of Pz, Quality values: -1.000000, 1.000000

Number of hits: 146
Hits Probability Indicator (size=146):

[0.00 0.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.20 1.00 1.00 0.20 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00
0.00 1.00 0.20 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00
1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.20 0.20 0.00]
real Om37.291s e H . .

«—
user Om34. 3565 Initialisation time

sys 0m2.251s

SOFTWARE 14

ICEDUST install/oaJulialInterface/bin$ time TestoaJulialnterfacelLoop 100
TestoaJulialnterfacelLoop:

Number of loop: 100 ... {700

Initialization of Julia (has to be done only once).

o, e

At . o _ . . _— _ o . . oOp pll[

ctivate Apollonius project: import Pkg; Pkg.activate("Apollonius"; shared=true); using Tracking_Apollonius éi}
Activating project at "~/comet/ICEDUST/ICEDUST_install/julia_depot/environments/Apollonius’

Module Ptr: ©0x14b3f07d1910

call init_apollonius()

Start init_apollonius

Precision: Float32

Magnetic Field: 1.0 Tesla

Grid Init:

[-504f0, 504f0] x [-504f@, 504f0] x [87f0, 375f0] x [0f0, 1500f0] x [104.969f0, 104.971f0]

(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1)

cu_array length: 2143260

cu_array constraint length: 661620

Dict{String, Any}("thresholds_iter" => [[9], [1, 3, 5, 7], [1, 2, 3, 4, 511, "magneticField" => 1.0f@, "iterations" => 3, "zProj" =>
-791.626, "intervals" => IntervalArithmetic.Interval{Float32}[[-504f0, 504f0], [-504f0, 504f@], [87f0, 375f0], [0f0, 1500f0],
[104.969f0, 104.971f0@]], "pivot" => Float32[0.0, 0.0], "precision" => Float32, "subdivisions" => @NamedTuple{ncellsX::Int64,
ncellsY::Int64, ncellsR::Int64, ncellsZ::Int64, ncellsE::Int64}[(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellskE =1
(ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 4, ncellsE = 1), (ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 3, ncellskE = 1)
"vote_min" => 15, '"divideandconquer" => true)

End init_apollonius

Apollonius is functional: 0

init_apollonius done

)
1,

The status returned by apollonius.init() is: @
From get_structure: length of jl_hits_drifts: 146
From get_structure: length of jl_hits_drifts: 146

From get_structure: length of jl_hits_drifts: 146
From get_structure: length of jl_hits_drifts: 146
From get_structure: length of jl_hits_drifts: 146

real1ml9.585s
user1lml7.655s
sys 0m2.109s

Time processing per hit: ~3.1 ms (on V100 GPU type)

SOFTWARE 15

CODE

oadJulialnterface/src/ICDChitsICEDUST.hxx

#ifndef OAJULIAINTERFACE CDChitsICEDUST HXX
#define OAJULIAINTERFACE CDChitsICEDUST HXX

HItS StrUCtu re. #include <vector>
Wire positions and drift distances typedef struct
in the local system of coordinates of the CDC (unit in mm) { std: :vector<float>* xstarts;
Tracking_Apollonius does not know anything about the std: :vector<float>* ystarts;
geometry std::vector<float>* zstarts;

std::vector<float>* xends;

std::vector<float>* yends;

std::vector<float>* zends;

std: :vector<float>* drifts;
}CDChitsICEDUST;

#include <julia.h>
JULIA DEFINE_FAST TLS // only define this once, in an executable (not in a shared library) if you want fast code.

#include <IApollonius.hxx>
#include <ICDChitsICEDUST.hxx>

int main()

{
IApollonius* apollonius = IApollonius::getInstance(); //singleton because a julia module can be seen as workspace
// apollonius->CUDA versioninfo(); //to print information on CUDA and GPU

int status = apollonius->init();
if (status != 0) return status; // 0 means everything is ok

CDChitsICEDUST hits;
fill hits(&hits); // A function which fill the hits values

const std::vector<float>* results = apollonius->apolloniusresults(&hits);
// work on results (next slide)

Another function to save time processing:

const std::vector<float>* results = apollonius->apolloniusresultswithselection(&hits, &selection);
where selection is a vector<bool>
Only hits with a true value are used at the first iteration. All hits are used for hits finding.

SOFTWARE 16

Results

const std::vector<float>" results = apollonius->apolloniusresults(&hits);

results vector:

1 XC

1 yC

: R

: 20

: RMS xc

: RMS yc

: RMS R

: RMs Z0

: Vote Max

: Number of cells in the accumulator

10: Sign of Pz

11: Quality (iteration level)

12: nhits (Number of hits)

13:12+nhits: Probability Indicator for each hit given in input (hit found for a given threshold).
13+nhits:end Sign of each drift distance (-1.0, 0.0 , 1.0 , 99.0 for hit flagged as noise)

OCooONOUTR~,AWNEOS

Quality is related to the iteration number of the given results.
Probability Indicator is a probability for a hit to belong to the track signal.

SOFTWARE 17

Results

Some Function Members are available to get partial informations:
2 the result on the current event is stored in the apollonius object.

printf("Xc, Yc, R, Z0 values: %f, %f, %f, %f\n", apollonius->Xc(), apollonius->Yc(), apollonius->R(), apollonius->Z0());
printf ("RMS of Xc, Yc, R, Z0 values: %f, %f, %f, %f\n", apollonius->RMS Xc(), apollonius->RMS Yc(), apollonius->RMS R(),
apollonius->RMS Z0());

printf("Vote max, number of cells values: %d, %d\n",apollonius->vote max(), apollonius->numberOfCells());
printf("sign of Pz, Quality values: %f, %f\n", apollonius->PzSign(), apollonius->quality());

printf ("Number of hits: %d\n", apollonius->numberOfHits());

std::vector<float> hitsProbabilityIndicator = apollonius->hitsProbabilityIndicator();
printf("Hits Probability Indicator (size=%1d):\n", hitsProbabilityIndicator.size());
printf("[");
for(size t 1i=0; i<hitsProbabilityIndicator.size(); i++)

printf("%.2f ", hitsProbabilityIndicator[i]);
printf(“]1\n");

std::vector<float> hitsDriftSigns = apollonius->hitsDriftSigns();
printf("Hits Drift Signs (size=%1d):\n", hitsDriftSigns.size());
printf("[");
for(size t i=0; i<hitsDriftSigns.size(); i++)

printf("%.2f ", hitsDriftSigns[i]);
printf("]1\n");

SOFTWARE 18

Possible Future

Integrating ICEDUST or a part of it in Julia
2 Why not if Julia has a lot of success

An example of Integration in high energy physics .

Geant4 is used like a package by Julia.

Among other conclusion: Geant4.jl can be a very useful add-on to the Geant4 project
Tutorials (very easy to setup and portable), interactive development (notebooks), connection to other
powerful packages in the Julia ecosystem (visualization, analysis, etc.)

2023 JuliaHEP Workshop

Geant4.jl - New Interface to s
Simlﬂati()n Apphcatlons 9 November 2023

Click on it to get he PDF

https://github.com/JuliaHEP/Geant4.jl

JuliaHEP is working on ROOT integration

UnROQT.jl is a packages already available to work with TTree

SOFTWARE 19

https://indico.cern.ch/event/1307331/contributions/5593649/attachments/2722696/4730700/Geant4.jl-20230928.pdf

