
SOFTWARE

Patrice Lebrun

Tracking Meeting at Lyon - CC
October 30, 2024

Tracking_Apollonius in ICEDUST

 1

SOFTWARE

 Apollonius' problem extended to a Full Stereo Drift Chamber
 The method is described in the ArXiv https://arxiv.org/abs/2401.04576
 Uses Julia programming Language

A New Track/Hit Finding Approach

2

Wilfrid da Silva, Patrice Lebrun,
Jean-Claude Angélique, Luigi Del Buono

https://arxiv.org/abs/2401.04576

SOFTWARE

Goal and why Julia
 Find signal hits and tracks in a noisy environment with the lowest possible

processing time and using common computer hardware like GPUs
 Improve efficiency of other methods.

 Julia is a high-level, high-performance dynamic language for scientific and
technical computing.
 Allows an easy use of GPU with available powerful mathematical packages
 Julia performance is identical to C/C++
 Main packages for achieving this goal:

 CUDA.jl (Nvidia)
 IntervalArithmetic.jl

 Useful Functionalities:
 Managing Packages (Pkg) (installation, versioning, compatibilities, ...)
 Embedding into C/C++
 Broadcast and vectorization
 Functions with Full dispatching
 Garbage Collector (GC)
 ...

3

https://docs.julialang.org/en/v1/
https://cuda.juliagpu.org/stable/
https://juliaintervals.github.io/IntervalArithmetic.jl/stable/
https://pkgdocs.julialang.org/v1/
https://docs.julialang.org/en/v1/manual/embedding/
https://docs.julialang.org/en/v1/base/arrays/#Broadcast-and-vectorization

SOFTWARE

illustration: event with noisy hits

4

Yao’s event
with 2500 hits of noise randomly distributed

 The signal has 89 hits
 72 hits found (81%)
 1 hit of noise selected

Added using Toy_CDC.jl
(our own Julia package
to simulate the CDC)

Processing Time on NVIDIA V100: 2.55 ms/hit

P
lot w

/ C
airoM

akie.jl package

Radius = drift distance

SOFTWARE

Development and Testing with Jupyter Notebooks

 Example with a starting part of
a Jupyter notebook
here is shown the nformation on
packages and type of GPU
used.

 More about Julia:
 Compilations Just In Time (JIT)

based on LLVM.
 Very easy to install (and uninstall)
 Open source with a large

community (but << Python)
 JuliaHEP community
 Good documentation

https://docs.julialang.org/en/v1/

5

[052768ef] CUDA v3.13.1 (<v5.3.4)
Pinned Version to use old GPU K80, the
only one available on jupyterlab
New more powerful GPUs will be available
in sept. (last version of CUDA will be used).

0. NVIDIA Tesla K80

Wikipedia: LLVM is a set of compiler and toolchain technologies[4] that can
be used to develop a frontend for any programming language and a backend
for any instruction set architecture.

https://docs.julialang.org/en/v1/

SOFTWARE

CDC Group
 Yao

Imperial College
 Per Jonsson
 Roden Deverni

Who

 Tracking_Apollonius Development
 Wilfrid da Silva
 Patrice Lebrun

 Integration in ICEDUST
 Patrice Lebrun

6

Julia World C++ ICEDUST World

SOFTWARE

Algorithm Based on Interval Arithmetic with GPU

7

1 1
1

1
1

1

1

1

1

1

1

1
1

1

0 0 0 0

00 00 00 0 00
00 00 00 0 00

00 00 00 0 00
00 00 00 0 0

0
0
0
0
0

0
0

0
00

00
0

0
0

0
0

0
0

0
0

00

0 0
0 0 0

Accumulator (vote)Multi-dimensional grid
(4-Dim)

[198f0, 216f0] × [36f0, 54f0] × [321.562f0, 339.375f0] × [375f0, 450f0]
 Xc Yc R Z0

[-0.12f0, 5.34f0] if 0 is in the intervalApollonius
Function

GPU
Pixel
(cells)

GPU
The function is
applied on all cells
in the "same time »
for a given hit

Loop on all hits:
Sum of votes

Barycentre
(on a selection of cells)

Hits finding

 Xc
 Yc
 R
 Z0
 …
 Probability Indicator

on each hit

CPU…
…
…

…

…
……

…

…

Accumulator

For a given hit
 Wire positions
 Drift distance

Apollonius
Function
(vectorisation
Apollonius.(grid)

SOFTWARE

Iterative Method

8

The cells having a number of votes greater than a given value
are selected (>MAX-threshold) and subdivided to create a new grid.

The first grid for the first iteration has to cover all
the allowed parameter space.

…
…
…

…

…
……

…

…

Example: 3 iterations (units: mm, MeV)

E=104.97
dE = 1.0e-5
intervals=[interval(-504.0, 504.0), interval(-504.0, 504.0), interval(87.0,
375.0), interval(0.0, 1500.0), interval(E-dE, E+dE)],
gridSubdivisions=[
 (ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1),
 (ncellsX=4, ncellsY=4, ncellsR=4, ncellsZ=4, ncellsE=1),
 (ncellsX=4, ncellsY=4, ncellsR=4, ncellsZ=3, ncellsE=1)]

With this configuration, the first grid has 2143260 cells.
Constraining the trajectory to be in the stopping target, the number of
cells is reduced to 661620.
Number of cells in next grids depends on the event.
In the last grid, cell size : 1 x 1 x 1 x 4.2 mm4 .

• Hit finding consists to find hits having a solution in the selected cells (cells with value > threshold).
• Only hits selected at the previous iteration are used for the next iteration.
• Time processing is roughly proportional to the number of hits (more noisy hits less time processing/hit)

E
quivalent to a single grid

w
ith ~ 32 billion of cells

Next iteration

SOFTWARE

Parameters

9

 Can only be modified by a Tracking_Apollonius package expert
 It could be necessary to decide whether some of them can be modified by ICEDUST

users.
To use GPU in single or double precision:
"precision" => Float32,

Value of the uniform Magnetic field used by Apollonius
"magneticField" => 1.0f0,

If no cells has a number of votes greater or equal to this limit, the accumulator is empty (no track found).
"vote_min" => 15,

At each iteration, a set of thresholds is defined.
The highest value is used to select cells to create the grid for the next iteration.
A set of hits found correspond to a threshold (each threshold is associated to a probability to be a hit of
signal).
A hit is found when it belongs to a cell with a number of votes > MAX(votes)-threshold
"thresholds_iter" => [[9], [1, 3, 5, 7], [1, 2, 3, 4, 5]],

Apollonius circle values are obtained with the cells having a number of votes > MAX(votes)-threshold_results.
For instance here, only the cells with the maximum of votes are used.
"threshold_results" => 1

Possible values domain of the Apollonius helix (Xc, Yc, R, Z0 and E)
"intervals" => IntervalArithmetic.Interval{Float32}
[[-504f0, 504f0], [-504f0, 504f0], [87f0, 375f0], [0f0, 1500f0], [104.969f0, 104.971f0]],

Defines the cells size for each iteration (number of cells in each dimension).
"subdivisions" => @NamedTuple{ncellsX::Int64, ncellsY::Int64, ncellsR::Int64, ncellsZ::Int64, ncellsE::Int64}[
(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1),
(ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 4, ncellsE = 1),
(ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 3, ncellsE = 1)]

Position of the projection plane
"zProj" => -791.626, better to choose 1 (12.5 mm) or 2 (6.25 mm) ?

Is 4.16 mm not too small ?

SOFTWARE

Performance
 Yao’s events Run001 (no noise added)

 Number of events: 6754
 Overall Total Number of Hits: 470710
 3.2 ms/hit on 1 device of NVIDIA V100 in single precision (this time per hit decreases

when the number of noisy hits increases).
 Resolutions [mm] (assuming a 1 Tesla uniform magnetic field).

 Resolutions [mm] for differences lower than 20 mm in absolute value

 Efficiencies:
 Number of hits not found (hit not in the accumulator):

 22401 (4.75 %)
 Number of hits found with the Highest Probability to be a hit of signal (hit in cells with maximum of

votes):
 420068 (89.24 %)

10

 Mean RMS
xc-xc0 -0.95 7.71
yc-yc0 -1.55 8.53
R-R0 0.67 10.09

 Mean RMS #events
xc-xc0 -0.74 4,89 6629 (98.1 %)
yc-yc0 -1.09 5.73 6552 (97.0 %)
R-R0 0.13 5.33 6478 (95.9 %)

SOFTWARE

Tracking_Apollonius in ICEDUST (1)
 ICEDUST_externals_source_LFS

 Official Julia binary Release
 it’s not recommended to use an own build of Julia (CUDA.jl)

 Currently JULIA/julia-1.10.5-linux-x86_64.tar.gz (64 bits)
 Other releases are available for many architectures and OS: https://julialang.org/downloads/

 ICEDUST_externals_install
 julia-1.10.5-linux-x86_64 [bin etc include lib libexec LICENSE.md share]

 ICEDUST_packages
 oaJuliaInterface (can be used for other Julia project)

 Goal: ICEDUST user does not need to know Julia
 C++ class with members to call some Tracking_Apollonius functions (currently)
 Tracking_Apollonius is a submodule
 Tracking_Apollonius has to be a git repository to be used by the package manager of Julia

 Meaning Tracking_Apollonius can be used also in a pure Julia environment (important for development)

 ICEDUST_install
 julia_depot directory where all packages and artefacts are installed (~2.7 Go)
 Shared library lib/liboaJuliaInterface.so and setups and executables for testing are in

oaJuliaInterface/bin
 Setup.sh is updated

11

https://julialang.org/downloads/
https://gitlab.in2p3.fr/Patrice/ICEDUST_packages/-/tree/master/oaJuliaInterface?ref_type=heads

SOFTWARE

Tracking_Apollonius in ICEDUST (2)
 Use embedding Julia in C/C++

 Simple functions are defined in Tracking_Apollonius to be easily called by ICEDUST,
avoiding to have very sophisticated C/C++ code to write.
 Limited to Array and Structure with leaf types (Int, float , double, bool …)

 Build procedures (new when red)
 ICEDUST_externals_install

 ICEDUST_install
 build has to be done on machine with GPU (the use of docker is underway).

12

git clone git@gitlab.in2p3.fr:Patrice/ICEDUST_packages.git
cd ICEDUST_packages
git clone git@gitlab.in2p3.fr:Patrice/Tracking_Apollonius
cd ..; mkdir build; cd build
cmake -DBUILD_JULIA=TRUE -DBUILD_GEANT4_VERSION=4.10.6 ../ICEDUST_packages
make -j4

Notes:
git clone --recurse-submodules git@gitlab.in2p3.fr:Patrice/ICEDUST_packages.git
will replace the two git clone commands when julia will be able to use submodules
(a patch is available but not yet applied).

git clone git@gitlab.in2p3.fr:Patrice/ICECDUST_external_sources_LFS.git
cd ..; mkdir ext_build; cd ext_build
cmake -DBUILD_JULIA=TRUE -DBUILD_GEANT4_VERSION=4.10.6 ../ICECDUST_external_sources_LFS
make -j4

‘Patrice’ is temporary, it should be comet (hoping so)

SOFTWARE

Testing

 Two executables are available in oaJuliaInterface/bin for testing and measuring
time performance

 1st Test (time TestoaJuliaInterface)
 check the result of Tracking_Apollonius with a sample of hits
 Measure the initialisation time

 2st Test (time TestoaJuliaInterfaceLoop <int>)
 to measure processing time per hit

 The sources are in ICEDUST_packages/oaJuliaInterface/app
 Could be used as example to use the interface.

13

SOFTWARE 14

ICEDUST_install/oaJuliaInterface/bin$ time TestoaJuliaInterface
TestoaJuliaApollonius:
Initialization of Julia (has to be done only once).

Activate Apollonius project: import Pkg; Pkg.activate("Apollonius"; shared=true); using Tracking_Apollonius
 Activating project at `~/comet/ICEDUST/ICEDUST_install/julia_depot/environments/Apollonius`
Module Ptr: 0x14a5feadb910
call init_apollonius() ...
Start init_apollonius
Precision: Float32
Magnetic Field: 1.0 Tesla
Grid Init:
[-504f0, 504f0] × [-504f0, 504f0] × [87f0, 375f0] × [0f0, 1500f0] × [104.969f0, 104.971f0]
(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1)
cu_array length: 2143260
cu_array constraint length: 661620

Dict{String, Any}("thresholds_iter" => [[9], [1, 3, 5, 7], [1, 2, 3, 4, 5]], "magneticField" => 1.0f0, "iterations" => 3, "zProj" => -791.626, "intervals" =>
IntervalArithmetic.Interval{Float32}[[-504f0, 504f0], [-504f0, 504f0], [87f0, 375f0], [0f0, 1500f0], [104.969f0, 104.971f0]], "pivot" => Float32[0.0, 0.0], "precision" => Float32,
"subdivisions" => @NamedTuple{ncellsX::Int64, ncellsY::Int64, ncellsR::Int64, ncellsZ::Int64, ncellsE::Int64}[(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1), (ncellsX
= 4, ncellsY = 4, ncellsR = 4, ncellsZ = 4, ncellsE = 1), (ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 3, ncellsE = 1)], "vote_min" => 15, "divideandconquer" => true)
End init_apollonius
Apollonius is functional: 0
init_apollonius done

The status returned by apollonius.init() is: 0

CUDA runtime 12.6, artifact installation
CUDA driver 12.6
NVIDIA driver 550.54.15

CUDA libraries:
- CUBLAS: 12.6.3
- CURAND: 10.3.7
- CUFFT: 11.3.0
- CUSOLVER: 11.7.1
- CUSPARSE: 12.5.4
- CUPTI: 2024.3.2 (API 24.0.0)
- NVML: 12.0.0+550.54.15

Julia packages:
- CUDA: 5.5.1
- CUDA_Driver_jll: 0.10.3+0
- CUDA_Runtime_jll: 0.15.3+0

Toolchain:
- Julia: 1.10.5
- LLVM: 15.0.7

1 device:
 0: Tesla V100-SXM2-32GB (sm_70, 31.237 GiB / 32.000 GiB available)

From get_structure: length of jl_hits_drifts: 146

Xc, Yc, R, Z0 values: -96.500000, -311.500000, 342.500000, -35.375999
RMS of Xc, Yc, R, Z0 values: 0.288675, 0.288675, 0.288675, 4.336767
Vote max, number of cells values: 62, 2
sign of Pz, Quality values: -1.000000, 1.000000

Number of hits: 146
Hits Probability Indicator (size=146):
[0.00 0.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.20 1.00 1.00 0.20 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00
0.00 1.00 0.20 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00
1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.20 0.20 0.00]

real 0m37.291s
user 0m34.356s
sys 0m2.251s

1st Test Output

Initialisation time

SOFTWARE

ICEDUST_install/oaJuliaInterface/bin$ time TestoaJuliaInterfaceLoop 100
TestoaJuliaInterfaceLoop:
Number of loop: 100 ...
Initialization of Julia (has to be done only once).

Activate Apollonius project: import Pkg; Pkg.activate("Apollonius"; shared=true); using Tracking_Apollonius
 Activating project at `~/comet/ICEDUST/ICEDUST_install/julia_depot/environments/Apollonius`
Module Ptr: 0x14b3f07d1910
call init_apollonius() ...
Start init_apollonius
Precision: Float32
Magnetic Field: 1.0 Tesla
Grid Init:
[-504f0, 504f0] × [-504f0, 504f0] × [87f0, 375f0] × [0f0, 1500f0] × [104.969f0, 104.971f0]
(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1)
cu_array length: 2143260
cu_array constraint length: 661620

Dict{String, Any}("thresholds_iter" => [[9], [1, 3, 5, 7], [1, 2, 3, 4, 5]], "magneticField" => 1.0f0, "iterations" => 3, "zProj" =>
-791.626, "intervals" => IntervalArithmetic.Interval{Float32}[[-504f0, 504f0], [-504f0, 504f0], [87f0, 375f0], [0f0, 1500f0],
[104.969f0, 104.971f0]], "pivot" => Float32[0.0, 0.0], "precision" => Float32, "subdivisions" => @NamedTuple{ncellsX::Int64,
ncellsY::Int64, ncellsR::Int64, ncellsZ::Int64, ncellsE::Int64}[(ncellsX = 63, ncellsY = 63, ncellsR = 18, ncellsZ = 30, ncellsE = 1),
(ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 4, ncellsE = 1), (ncellsX = 4, ncellsY = 4, ncellsR = 4, ncellsZ = 3, ncellsE = 1)],
"vote_min" => 15, "divideandconquer" => true)
End init_apollonius
Apollonius is functional: 0
init_apollonius done

The status returned by apollonius.init() is: 0
From get_structure: length of jl_hits_drifts: 146
From get_structure: length of jl_hits_drifts: 146
...
...
From get_structure: length of jl_hits_drifts: 146
From get_structure: length of jl_hits_drifts: 146
From get_structure: length of jl_hits_drifts: 146

real 1m19.585s
user 1m17.655s
sys 0m2.109s

15

2nd Test Output

(100 loops)

Time processing per hit: ~3.1 ms (on V100 GPU type)

SOFTWARE

CODE

16

#include <julia.h>
JULIA_DEFINE_FAST_TLS // only define this once, in an executable (not in a shared library) if you want fast code.

#include <IApollonius.hxx>
#include <ICDChitsICEDUST.hxx>

int main()
{
 IApollonius* apollonius = IApollonius::getInstance(); //singleton because a julia module can be seen as workspace
 // apollonius->CUDA_versioninfo(); //to print information on CUDA and GPU

 int status = apollonius->init();
 if (status != 0) return status; // 0 means everything is ok

 CDChitsICEDUST hits;
 fill_hits(&hits); // A function which fill the hits values

 const std::vector<float>* results = apollonius->apolloniusresults(&hits);
 // work on results (next slide) ...
}

Hits Structure:
Wire positions and drift distances
in the local system of coordinates of the CDC (unit in mm)
Tracking_Apollonius does not know anything about the
geometry

#ifndef OAJULIAINTERFACE_CDChitsICEDUST_HXX
#define OAJULIAINTERFACE_CDChitsICEDUST_HXX

#include <vector>
typedef struct
{
 std::vector<float>* xstarts;
 std::vector<float>* ystarts;
 std::vector<float>* zstarts;
 std::vector<float>* xends;
 std::vector<float>* yends;
 std::vector<float>* zends;
 std::vector<float>* drifts;
}CDChitsICEDUST;

oaJuliaInterface/src/ICDChitsICEDUST.hxx

const std::vector<float>* results = apollonius->apolloniusresultswithselection(&hits, &selection);
where selection is a vector<bool>
Only hits with a true value are used at the first iteration. All hits are used for hits finding.

Another function to save time processing:

SOFTWARE

Results

 const std::vector<float>* results = apollonius->apolloniusresults(&hits);

17

 results vector:

 0: xc
 1: yc
 2: R
 3: Z0
 4: RMS xc
 5: RMS yc
 6: RMS R
 7: RMs Z0
 8: Vote Max
 9: Number of cells in the accumulator
 10: Sign of Pz
 11: Quality (iteration level)
 12: nhits (Number of hits)
 13:12+nhits: Probability Indicator for each hit given in input (hit found for a given threshold).
 13+nhits:end Sign of each drift distance (-1.0, 0.0 , 1.0 , 99.0 for hit flagged as noise)

 Quality is related to the iteration number of the given results.
 Probability Indicator is a probability for a hit to belong to the track signal.

SOFTWARE

Results

 Some Function Members are available to get partial informations:
 the result on the current event is stored in the apollonius object.

18

 printf("Xc, Yc, R, Z0 values: %f, %f, %f, %f\n", apollonius->Xc(), apollonius->Yc(), apollonius->R(), apollonius->Z0());
 printf("RMS of Xc, Yc, R, Z0 values: %f, %f, %f, %f\n", apollonius->RMS_Xc(), apollonius->RMS_Yc(), apollonius->RMS_R(),
apollonius->RMS_Z0());

 printf("Vote max, number of cells values: %d, %d\n",apollonius->vote_max(), apollonius->numberOfCells());
 printf("sign of Pz, Quality values: %f, %f\n", apollonius->PzSign(), apollonius->quality());

 printf("Number of hits: %d\n", apollonius->numberOfHits());

 std::vector<float> hitsProbabilityIndicator = apollonius->hitsProbabilityIndicator();
 printf("Hits Probability Indicator (size=%ld):\n", hitsProbabilityIndicator.size());
 printf("[");
 for(size_t i=0; i<hitsProbabilityIndicator.size(); i++)
 printf("%.2f ", hitsProbabilityIndicator[i]);
 printf(“]\n");

 std::vector<float> hitsDriftSigns = apollonius->hitsDriftSigns();
 printf("Hits Drift Signs (size=%ld):\n", hitsDriftSigns.size());
 printf("[");
 for(size_t i=0; i<hitsDriftSigns.size(); i++)
 printf("%.2f ", hitsDriftSigns[i]);
 printf("]\n");

SOFTWARE

Possible Future

19

• An example of Integration in high energy physics .

Click on it to get he PDF

• Geant4 is used like a package by Julia.
• Among other conclusion: Geant4.jl can be a very useful add-on to the Geant4 project

 Tutorials (very easy to setup and portable), interactive development (notebooks), connection to other
powerful packages in the Julia ecosystem (visualization, analysis, etc.)

• JuliaHEP is working on ROOT integration

• UnROOT.jl is a packages already available to work with TTree

 Integrating ICEDUST or a part of it in Julia
 Why not if Julia has a lot of success

https://indico.cern.ch/event/1307331/contributions/5593649/attachments/2722696/4730700/Geant4.jl-20230928.pdf

