

Study of the hadronic PeVatron candidate

SNR G106.3+2.7

observed at Large Zenith Angle with LST-1 and MAGIC 2024/12/09 3rd Year PhD Student Presentations

Marie-Sophie Carrasco, PhD student

carrasco@cppm.in2p3.fr

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Introduction The quest for Galactic PeVatrons

Diffuse cosmic ray (CR) flux on Earth

- Charged particles: hadrons (~98%, mainly p) and leptons (~2%, mainly e^{\pm})
- Power law with first index break at ~3 PeV: the knee
- · Galactic origin up to the knee, then Extra-Galactic
- PeVatrons: sources of ultra-high energy cosmic rays (UHE CRs, E \gtrsim 0.1 PeV), still mostly unknown

Galactic Supernova Remnants (SNRs)

- · Associated pulsars are known leptonic PeVatrons
- Main hadronic PeVatron candidates
- Strong particle acceleration by diffusive shock acceleration

Gamma-ray astronomy ideal for PeVatron detection

- Gamma-ray emission by UHE CRs interactions: pion production, leptonic radiation
- CR ~1PeV \rightarrow gamma ~100 TeV

SNR G106.3+2.7 A confirmed PeVatron, hadronic or leptonic?

LHAASO -> 43 UHE Galactic sources

Y-rays measured between 1 TeV - 1.4 PeV

SNR G106.3+2.7 among the sources

Measured up to ~600 TeV

Head - pulsar (PSR) and its pulsar wind nebula (PWN) colliding in dense HI cloud (blue)

Tail

expanding in low density HI cavity dense molecular cloud (red)

leptonic PeVatron?

hadronic PeVatron?

SNR G106.3+2.7 Recent VHE results

Very high energy (VHE, E≥0.1 TeV) emission from head and tail

- MAGIC: detection up to 30 TeV, showing an energy-dependent morphology
- HAWC, Tibet ASy, LHAASO: detection at O(10-100TeV), with angular resolution too low for morphology
- Study with high angular resolution needed at E>10 TeV

Observation strategy Study goal

Understanding the nature of the source by resolving its energy-dependent morphology

Exploration of the 1-50 TeV energy range

With an angular resolution <0.1 deg</p>

Cao et al. (2023): LHAASO data from catalog, CGPS 1420 MHz radio contours

Observation strategy <u>Gamma-ray astronomy with IACTs</u>

Imaging Air Cherenkov Telescopes (IACTs)

- Gamma-ray interaction with atmosphere generates an extensive air shower
- Electromagnetic cascade of particles with velocity greater than light in atmosphere → optical Cherenkov light pool
- Shower development imaged in camera by each IACT of the array
- Gamma-ray energy and direction well constrained by shower parameters → good angular resolution

Observation strategy The LST-1 + MAGIC IACT array

Ongoing multi-year observation campaign with IACT array

- **LST-1**: first Large-Sized Telescope prototype of the Cherenkov Telescope Array Observatory (CTAO), inaugurated end of 2018
- **MAGIC**: two IACTs neighbors to LST, stereo observations since 2009
- Located at the Roque de los Muchachos Observatory (La Palma, Spain)

Observation strategy Reaching high energies with LZA observation

LST-1 differential sensitivity for the Crab Nebula (Abe et al., 2023)

LST-1 and MAGIC designed for lower end of the energy spectrum

optimal sensitivity for ~0.1 - ~10 TeV

Large zenith angle (LZA, zenith = 55°-75°) observation

Increases the effective collection area up to a factor 10 for the highest energies

Expected performance

- Effective area strongly increases with zenith at VHE
- Angular resolution is expected to be < 0.1° for highest energies
- Energy resolution is also expected to be better than 15% for highest energies at all zenith

Observation strategy Challenges

LZA observation: the main source of difficulties for our study

- Greater depth of atmosphere
- Density profile of the atmosphere varies exponentially with zenith
- Higher Cherenkov light absorption
- Increased sensitivity to bad weather conditions

zenith angle Grieder, P.K. (2010)

Zenith-dependent bias in reconstruction via random Forest trained on discrete pointing MC simulation

- Data quality
 Degraded signal-to-noise ratio → lot of bad quality data
- Data quality parameters behave differently \rightarrow need for custom selection

Impact at every level

Reconstruction

- Smaller amount of p.e. collected in the camera \rightarrow higher energy threshold
- Event reconstruction uses random forest (RF) trained on MC simulation → bias introduced by fast-varying zenith-dependent features

Analysis

 Inhomogeneities in large field of views (FoVs) → need for precise background model

Data quality and selection Data selection tool

"Recovered" runs: passing (green) and rejecting (red) standard selection cuts

Log-intensity rates = good quality indicators

- Distribution of the rate of Cherenkov photo-electrons measured in each run event
- Maximum rate value and position: sky conditions
- Behavior before max rate: energy threshold
- Behavior after max rate : calibration, car flash, sky condition

Custom selection tool development

- Gaussian containment of key rate features
- Zenith-dependent

Tool validation on Crab Nebula

- 94.5% match with standard selection and standard zenith
- 81.2% match with standard selection and LZA
- More permissive to low rates, otherwise very good agreement

3.9% "recovered" LZA data

- Slightly lower performances due to lower rates
- Still usable with appropriate analysis

Data quality and selection SNR G106.3+2.7 LZA LST-1 data

"Recovered" runs: passing (green) and rejecting (red) standard selection cuts

SNR G106.3+2.7 observation up to 2024-12-03

- 271 runs taken at LZA (zenith = 55° -75°)
- 68.8 h total livetime
- final target: 120 h

Selected dataset

- 64.4% selected
- * 25.2% of "recovered" data \rightarrow significantly larger statistics

Background estimation performed on events map

1. at source region level to perform spectral analysis

1D analysis

- No background model assumed
- Events are just binned in energy

Two regions

- ON: the region in which we want to detect signal
- OFF: region(s) where background is expected to be equivalent

 $N_{Signal} = N_{ON} - N_{Bkg}$

25

20

15

10

OFF regions determined with the ring (left) and reflected (right) background methods

Median energy difference vs mean zenith difference between ON and OFF regions

Bias issue at LZA

- Event distribution is zenith-dependent → inhomogeneities between ON-OFF regions
- Complex FoV events need to be normalized with precise background instrument response functions (IRF)

Berge et al. (2007)

Background modeling Background estimation for high level analysis (2)

Background estimation performed on events map

- 1. at source region level to perform spectral analysis
- 2. at field-of-view (FoV) level to produce full skymaps with significance

Background IRF

- Model the background rate per solid angle as a function of reconstructed energy and detector coordinates (FoV coordinates)
- 2D (E, offset) or 3D (E, Ion, Iat)
- Computed on events map

 $\alpha = \frac{\int_{OFF} IRF_{Bkg}(E, \Omega, t) \ dE \ d\Omega \ dt}{\int_{pixel} IRF_{Bkg}(E, \Omega, t) \ dE \ d\Omega \ dt}$

Normalization

- Rate from IRF used instead of solid angle ratio
- Each pixel becomes an ON region
- Integration over FoV or ring OFF region like before
- Source region masked to prevent signal contamination

Background modeling

SimBMVtool

CPPN

- Custom analytical background IRF
- Full observation simulation

Simulation and background model validation tool (SimBMVtool) needed to test the

performances of our background IRF modeling tool

acceptance_modelisation (accmodel)

- Background IRF modeling package developed by M. De Bony (new post-doc at CPPM)
- Option for zenith-binned modeling
- G. Emery (previous post-doc) and I joined the development to improve performance and add features
- Paper in preparation

Background modeling

CENTRE DE PHYSIQUE DES Particules de Marseille

SimBMVtool + accmodel: Background modeling and model data validation

Background modeling

SimBMVtool + accmodel: Model validation with skymaps

SimBMVtool

CENTRE DE PHYSIQUE DES Particules de Marseille

- Custom analytical background IRF
- Full observation simulation
- Background modeling on simulation
- Output to true IRF comparison
- Background estimation with the output model
- Skymap production with event significance
- Background model figure of merit: residuals should follow normal law if purely statistical fluctuations

Scientific preliminary results SNR G106.3+2.7: Data analysis

Joint analysis: 50.4 hours

- · Combination of simultaneous LST-1 and MAGIC data
- 3 datasets: LST-1 + MAGIC, LST-1 Mono, MAGIC
- Combined after specific analysis pipeline
- High level analysis with gammapy

Results presented this summer at Gamma24 by G. Emery

Background IRF modeled with acceptance_modelisation

- Used for both skymaps and spectral analysis
- Zenith-dependent 3D IRF (E, Alt, Az)
- Model fitted per energy bin
- Zenith-binning and fit methods implemented by us
- Fit method validated with SimBMVtool

Scientific preliminary results SNR G106.3+2.5: Energy-dependent morphology

Results with 50.4 hours

- 3-100 TeV range
- 5σ detection overall

Energy-dependent morphology

- 4 energy bins
- More than 4σ in all energy bins
- Significance maximum moving away from the pulsar with increasing energy above 6 TeV

We begin to see the energy-dependent morphology, with a shift of the emission towards the tail for E>6 TeV \rightarrow promising hadronic PeVatron

Scientific preliminary results SNR G106.3+2.5: Spectral analysis

Comparison with literature

- MAGIC results with head and tail region spectra
- LHAASO result with WCDA instrument region spectrum

Good connection with published spectra

- Good agreement regarding the norm
- Power law indices vary due to different energy ranges but are consistent

The hadronic PeVatron candidate SNR G106.3+2.7 observed at Large Zenith Angle with LST-1 and MAGIC

Data quality and selection

- Development of a data quality selection tool
- Data selection specific to LZA observations allowing to recover data

Data reconstruction

Reconstruction pipeline improvement (1st year, not shown here)

Background modeling

- Contribution to modeling
 package development
- Development of a simulation and model validation tool
- Diffusion of the tool within the LST collaboration
- Speaker at the LST analysis school

Scientific preliminary results

- First look at signs of the energy-dependent morphology
- Preliminary source spectra consistent with literature
- Promising results for hadronic PeVatron

What's next?

- Background estimation parametrization final study
- acceptance_modelisation paper with M. De Bony and G. Emery
- Prepare SNR G106.3+2.7 study paper while waiting for data
- Presentation request for ICRC

Thank you for your attention!

Istchain: <u>https://zenodo.org/doi/10.5281/zenodo.6344673</u> magic-cta-pipe: <u>https://github.com/cta-observatory/magic-cta-pipe</u> (cf. <u>LST-1+MAGIC performance paper</u>) MARS: <u>https://arxiv.org/abs/0907.0943</u>

gammapy: <u>https://zenodo.org/doi/10.5281/zenodo.8033275</u> gammapy-data: <u>https://github.com/gammapy/gammapy-data</u>

acceptance_modelisation: https://github.com/mdebony/acceptance_modelisation