ML and related studies at SPIRAL2 A Ghribi*; <u>C Lassalle*</u>; <u>A Plaçais</u>; F Bouly[®]; G Normand^{*}; A Orduz^{*}; A Leduc^{*}

*GANIL; CLPSC

M4CAST Annual meeting, Nov 6th 2024

Outline

Context

Virtual diagnostic : NN based heat load observer

Optimized tuning : LigthWin

Coming up next

• GANIL

• The LINAC

lons sources, MEBT, RFQ, SRF cavities, experimental areas, ...

 The superconducting radio frequency (SRF) cavities
26 cavities, 19 cryomodules, two types

GANIL

• The LINAC

lons sources, MEBT, RFQ, SRF cavities, experimental areas, ...

 The superconducting radio frequency (SRF) cavities 26 cavities, 19 cryomodules, two types

RADIO **F**REQUENCY QUADRUPOLE

LINAC

SUPER SEPARATOR **S**PECTROMETER

• GANIL

• The LINAC

lons sources, MEBT, RFQ, SRF cavities, experimental areas, ...

The superconducting radio frequency (SRF) cavities

26 cavities, 19 cryomodules, two types.

- For an infrastructure in operation, **reliability** is key ! We try to have less down time by :
 - Detecting and preventing **anomalies**
 - Dynamically compensating failures in SRF cavities

SPIRAL2 Issues

- Cavities abnormal behaviors monitoring
 - A dedicated virtual heat load / Qo observer;
- Cavities fault-compensation strategies
 - A dedicated knowledge database for faults compensation.

CMA11 abnormal behavior : heat load and BLM measurements as a function of the accelerating field.

SPIRAL2 Issues

- Cavities abnormal behaviors monitoring
 - A dedicated virtual heat load / Qo observer;
- Cavities fault-compensation strategies
 - LightWin : A dedicated tool for multivariate optimization.

Emittance degradation before and after CMA11 failure

Virtual observer Genesis

• Inputs

• Multiple sensors and actuators for each cryomodule ;

• Data

- Dedicated machine studies campaigns (3 campaigns);
- Architectures
 - DNN, CNN, LSTM, Stacked mixtures, Mixtures of experts.

9

es box	
-	
-	
X2	
hase	
ator	
nodule	

Virtual observer Genesis

Inputs

• 5 sensors and two actuators for each cryomodule;

• Data

• Dedicated machine studies campaigns (3 campaigns);

Architectures

• DNN, CNN, LSTM, Stacked mixtures,

Virtual observer Genesis

Inputs

• 5 sensors and two actuators for each cryomodule ;

• Data

 Dedicated machine studies campaigns (3 campaigns);

Architectures

 DNN, CNN, LSTM, Stacked models, Mixtures of experts.

Virtual observer Some results

- All trained models performances are within specifications;
- Stacked models improve the predictions;

CMA12 inference results for different NN architectures trained on 2022 campaign data sets with all sensors.

Virtual observer Challenges

Reproducible behavior

• The machine deviates from year to year ;

Generalized representation

- Different dynamics, different cryomodules and different operating conditions;
- Embedding compatible
 - Compatible with pruning without performance degradation;

Virtual observer Challenges

Reproducible behavior

• The machine deviates from year to year ;

Generalized representation

- Different dynamics, different cryomodules and different operating conditions;
- Embedding compatible
 - Compatible with pruning without performance degradation;

Generalised, cryomodule agnostic (type A) model based on a LSTM architecture trained on CMA02 to 12. Inference on CMA06.

LightWin The tool

- A light, beam-dynamics optimization algorithm
- Used to find faults compensation settings in linear accelerators

Compensation of a multi failure scenario in the MYRRHA-ADS. Particle densities of the retuned linac, w.r.t. nominal linac. Courtesy of F. Bouly.

LightWin Under the hood

Beam dynamics

• Envelope calculation based longitudinal dynamics ;

Optimisation

- Downhill simplex ;
- Least squares ;

Miverva CM benchmarks

LightWin SPIRAL2 (Ω)

Challenges

- Reduced longitudinal acceptance (with respect to ADS links);
- Reduced RF amplifiers power margin ;

Ongoing

- Need to account for space charge in longitudinal dynamics;
- New optimization algorithms : •
 - Particle Swarm Optimisation (PSO);
 - Non-dominated Sorting Genetic Algorithm (NSGA).

CMA06 manual failure scenario compensation using TraceWin (~1 week)

Coming next

Anomalies

• LLRF postmortem faults classification

Optimisation

• SPIRAL2 as a use case for extended capabilities of LightWin

