Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings

Emmanuel Goutierre / Hayg Guler

H. Guler¹, C. Bruni¹ J. Cohen², M. Sebag²

¹Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)

²Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)

Wednesday 6th November 2024

Motivations

Surrogate models : from aggregate to 6D

- Models are good for reproducing beam aggregate properties (size, emittance, Edep, ...)
- aggregates could be insufficient to get all properties of a beam
- by definition, full beam reconstruction gets all the beam properties
- 6D beam as input for a new simulation
- Full 6D beam helps to better understand disturbed beam
- helps to better understand the beam halo
- better understand collective effects

Where to learn

- Large machines mean a very large amount of data
- Why not slice a machine
- in each slice, reconstruct 6D beam
- could help in transfer learning
- could help in fault detection and machine drift
- problem of multi-task learning

Table of Contents

LinacNet

• Physics-aware modelling

• Neural Network for 6D distribution

- Training Procedure
- Results

Table of Contents

LinacNet

- Physics-aware modelling
- Neural Network for 6D distribution
- Training Procedure
- Results

Physics-aware modelling

Table of Contents

LinacNet

• Physics-aware modelling

• Neural Network for 6D distribution

- Training Procedure
- Results

LinacNet

Physics-aware modelling

Conclusion 000

6/19

Multi-Layer Perceptron: A First Model

Taining Curve

Figure: Training Curve

Figure: MLP as a surrogate model of a Linac

Multi Layer Perceptron

- Stack all inputs and outputs
- $\bullet~$ 10k simulations sampling ${\cal A}$ and ${\cal B}$
- Minimization of the L2 loss

LinacNet

Conclusion 000

Physics-aware modelling

Physics-aware: Cutting the non-causal links

Figure: LinacNet with 6 modules corresponding to 6 diagnostic stations on the Linac

LinacNet

- Split input and output according to their position in the Linac
- Neural Network Architecture reflecting a Linac architecture
- Each Module models one Diagnostic (could be real or virtual)

Table of Contents

LinacNet

Physics-aware modelling

• Neural Network for 6D distribution

- Training Procedure
- Results

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Conclusion 000

Neural Network for 6D distribution

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Conclusion 000

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Conclusion 000

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Conclusion 000

Neural Network for 6D distribution

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Conclusion 000

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Conclusion 000

Neural Network for 6D distribution

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Conclusion 000

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (CVPR 2017)

Training Procedure

Table of Contents

LinacNet

- Physics-aware modelling
- Neural Network for 6D distribution

• Training Procedure

Results

2 Conclusion

Training Procedure

Accelerator as a sequence of modules

- We divide our accelerator in a sequence of sub-parts
- Each part could contain controls / measurements (real or virtual)
- Learning a full machine could be complicated, costly

Good for

- transfer to a real machine
- optimize : could be done by part / module
- Retrain locally due to drift in the data
- Address larger machines

Sequential Network as a Multi-Objective Optimization

- General question in machine learning
- how to learn a sequence of models, tasks ?
- Could be heterogeneous : classification, regression, etc
- Conflicting between modules could deteriorate the global loss
- Independent Errors : $Err_{i,i+1}(d_i, d_{i+1}, a; \theta) = I(f_{i,i+1}(d_i, a; \theta), d_{i+1})$
- End-to-End Errors : $Err_{0,i}(d_0, d_i, a; \theta) = I(f_{0,i}(d_0, a; \theta), d_i)$

Scalarization of the Multi-Objective Loss

$$\mathcal{L}_{w}\left(\boldsymbol{d},\boldsymbol{a};\theta\right) = \sum_{i=1}^{N} w_{i-1,i} \textit{Err}_{i-1,i}\left(\boldsymbol{d}_{i-1},\boldsymbol{d}_{i},\boldsymbol{a};\theta\right) + w_{0,i}\textit{Err}_{0,i}\left(\boldsymbol{d}_{0},\boldsymbol{d}_{i},\boldsymbol{a};\theta\right)$$

Conclusion 000

One example of learning a sequence : MGDA¹

• Dynamic weighting of the module that moderates conflicting loss between modules

$$w^* = \operatorname*{arg\,min}_w \mathcal{L}_w, \qquad w > 0, \qquad \sum_{i=1}^N w_{i-1,i} + w_{0,i} = 1$$

Properties

- Common descent direction to all objectives
- Stop when encountering a Pareto-invariant point

¹Sener and Koltun, "Multi-Task Learning as Multi-Objective Optimization".

Results

Table of Contents

LinacNet

- Physics-aware modelling
- Neural Network for 6D distribution
- Training Procedure
- Results

LinacNet

Results

Numerical Results

The best model achieves results comparable with the diagnostic station accuracy.

Architecture	BPM	ICT	YAG	ICT	BPM	YAG
FeedForward	776.000	1084.0 m	1602.0 m	1106.0 m	1261.um	1554.000
444 444 444 444 444 444	monin	1004µ111	1052µ111	1100µ111	1201µ111	1554µ111
LinacNet	$198 \mu m$	$254 \mu m$	$541 \mu \mathrm{m}$	$618 \mu { m m}$	$719 \mu \mathrm{m}$	$913 \mu { m m}$
ThomNet	$178 \mu m$	$134 \mu { m m}$	$247 \mu \mathrm{m}$	224µm	$258 \mu m$	336 μ m

Table: MAE of the position. The accuracy of the BPM is $\sim 100 \mu {\rm m}$

Architecture	BPM	ICT	YAG	ICT	BPM	YAG
FeedForward	$176 \mathrm{pC}$	$177 \mathrm{pC}$	$167 \mathrm{pC}$	$91\mathrm{pC}$	$91\mathrm{pC}$	$91\mathrm{pC}$
LinacNet	$28\mathrm{pC}$	$28 \mathrm{pC}$	$29\mathrm{pC}$	$34\mathrm{pC}$	$34\mathrm{pC}$	$35\mathrm{pC}$
ThomNet	8pC	9pC	9pC	8pC	8pC	8pC

Table: MAE of the charge. The accuracy of the ICT is $\sim 10 {\rm pC}$

Results

Distributions

Figure: Comparison between the projection of the simulated beam (left) and predicted beam (right) on the transverse and longitudinal space.

E. Goutierre / H. Guler

Table of Contents

LinacNet

Physics-aware modelling

• Neural Network for 6D distribution

- Training Procedure
- Results

Perspectives

Results

- Reflecting the physical constraints in the neural architecture speeds up the training and gives better results
- Precision of the same orders as the diagnostics installed on ThomX

Challenges

- Training of a modular model
- Performance for the optimization task to be tested

Questions?