Measurement of the *W*-boson mass with the ATLAS detector

Andrés Pinto

05/12/2024

The Standard Model (SM) of particle physics

- Describes strong and Electroweak interactions.
- Explains the electroweak symmetry breaking via the Brout- Englert-Higgs mechanism.
- Particles:
 - Fermions: quarks and leptons.
 - Gauge bosons: gluon (g), photon (γ) , W^{\pm} and Z
 - Scalar boson: Higgs boson (H)

The ATLAS detector

3

- Multi-purpose particle detector designed to study fundamental physics.
- Sub-detectors: Inner Detector (ID), calorimeters, Muon Spectrometer (MS), and a complex magnetic field.

• Muon system is crucial for triggering and precise measurements, e.g. $pp \rightarrow W \rightarrow \mu \nu$.

Why measuring the W boson mass?

- The W boson mass (m_W) is important for testing the SM and BSM physics
- BSM scenarios could modify m_W by radiative corrections Δr .
- In the SM, these corrections come mainly from the top-quark and Higgs boson

W boson production and leptonic decay

- In the SM, the W boson can decay in quarks and leptons and its mass is measured in the lepton channels: $W \rightarrow \ell \nu \ (\ell = e^{\pm}, \mu^{\pm})$.
- Higher-order corrections lead to a non-trivial p_T^W distribution that is crucial to control.
- This channel is challenging since the neutrino escapes the detection, and its momentum has to be inferred from other quantities.
- In the detector we measure:
 - The momentum of the charged lepton, p_T^{ℓ} .
 - The hadronic recoil, $u_{T.}$
- We can infer:

5

- The energy of the neutrino: E_T^{miss}
- The transverse mass: m_T

⁶ What do we measure?

- Observables sensitive to m_W
 - Lepton transverse momentum: p_T^{ℓ}
 - Transverse mass m_T

$$m_T = \sqrt{2p_T^{\ell} E_T^{miss} (1 - \cos \Delta \phi_{\ell \nu})}$$

- For p_T^{ℓ} , a good lepton calibration is required.
- For m_T , a precise calibration of u_T is required.
- My work is focused on:
 - Muon momentum calibration
 - Parameter estimation and uncertainty components

Detector calibration

- Muons are reconstructed in the MS and ID. A combined (CB) candidate is formed using the MS + ID.
- Different sources can affect the momentum of the muons in the detector, known as:
 - Sagitta bias
 - Inner tracker detector deformations (length-scale bias)
 - Magnetic field and resolution mismodelling
- Before calibration, data and simulation are not in good agreement.

Length-scale bias

- To look for ID distortions, we can use the $J/\psi \rightarrow \mu\mu$ resonance in a frame defined in J/ψ direction of flight.
- The invariant mass versus the azimuthal angle scan can provide hints of possible ID deformations in rapidity
- These deformations are modelled using magnetic field distortions and radial distortions
- Final fits show an average bias of about $\langle \varepsilon \rangle \sim 10^{-3}$
- These maps are used to correct the data

Magnetic field and resolution mismodelling

- After correcting for Sagitta and ID deformations, the next step is to correct for scale and resolution effects.
- The scale effect is modelled as a shift in the transverse momentum,

9

$$p_T^{scale} = (1 + \alpha) \cdot p_T^{reco}$$

• The resolution is modelled by smearing the di-muon invariant mass

$$m_{\mu\mu}^{smear} = m_{\mu\mu}^{true} + (1+\beta) \cdot \left(m_{\mu\mu}^{reco} - m_{\mu\mu}^{true}\right)$$

• Templates are done to perform a fit of the invariant mass and to map the scale and resolution coefficients of the muons.

Final Muon Momentum Calibration

10

- After correction, a data-to-simulation agreement at the per mille level within the uncertainties is obtained. Systematics are evaluated by mass window variation.
- Relative systematic uncertainties of 8×10^{-5} in scale and 4×10^{-2} in resolution were found. This is, a precision of about 6 MeV for m_W .

How to measure the W boson mass?

- Once the calibration is done, we can use the corrected simulation to perform a fit data-to-simulation of W boson distributions.
- To extract m_W the <u>template fit method</u> is used.
- Different templates are done for different values of m_W .
- A likelihood function is maximized in order to find the template that best describes the data.
- At 7 TeV, two observables were used p_T^{ℓ} and m_T

Profile Likelihood fit for W mass

• The likelihood is giving by,

Profile Likelihood fit for W mass

• In the <u>Gaussian limit</u>, the likelihood admits an analytical solution (<u>Eur. Phys. J. C, vol. 84, 2024</u>) that allows to simplify the calculations:

$$-2\ln \mathcal{L}(\vec{\theta}, \vec{\alpha}) = \sum_{i,j} \left(m_i - t_i(\vec{\theta}) - \sum_r \Gamma_{ir}(\alpha_r - a_r) \right) V_{ij}^{-1} \left(m_j - t_j(\vec{\theta}) - \sum_s \Gamma_{js}(\alpha_s - a_s) \right)$$
$$+ \sum_r (\alpha_r - a_r)^2.$$

- This approach is particularly useful to study the uncertainty components.
- The systematic components can be properly evaluated.
- This can be <u>generalized to non-Gaussian</u> limits through the global shifted observable method.

Uncertainty components

In the Gaussian limit, the likelihood covariance can be divided in three block matrices:

Pre-fit and Post-fit plots

The post-fit, $|\eta|$ –inclusive p_T^{ℓ} , m_T distributions obtained with CT18 agree with the data within the uncertainties.

m_W measurement at $\sqrt{s} = 7$ TeV

16

- The final $p_T^{\ell} m_T$ combination is performed using the BLUE approach where the correlation is obtained by pseudo-experiments. CT18 PDF set is chosen as baseline.
- Result agrees with the SM and improvement with respect to 2017 of about 15%.

m_W measurement at $\sqrt{s} = 7$ TeV

• Final result corresponds to,

 $m_W = 80366.5 \pm 15.9 (\pm 9.8 \pm 12.5) \text{ MeV}$

• With uncertainty decomposition,

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	<i>u</i> _T	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

• In 2017, PDF unc. was ~ 9 MeV and $A_i + p_T^W$ unc. was ~ 8 MeV which means an improvement of about 37% and 45% respectively

Measuring the W width at 7 TeV

- The W-boson width was measured in a similar strategy. This is so far, the most precise measurement of Γ_W .
- Result is consistent with the SM within 2 standard deviations.

 $\Gamma_W = 2202 \pm 47 \ (\pm 32 \pm 34) \text{ MeV}$

• With uncertainty decomposition:

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	<i>u</i> _T	Lumi	m_W	PS
p_{T}^{ℓ}	72	27	66	21	14	10	5	13	12	12	10	6	55
m _T	48	36	32	5	7	10	3	13	9	18	9	6	12
Combined	47	32	34	7	8	9	3	13	9	17	9	6	18

19

Current status in m_W

- Currently, the ATLAS collaboration prepares a new measurement of m_W using low pile-up data set at 5.02 TeV and 13 TeV.
- This dataset is of particular interest since it provides a better resolution in the transverse mass.
- This result in an increased sensitivity of m_T to m_W .
- These conditions provide a good modelling for the transverse momentum of the W boson, p_T^W , which is one of the large uncertainty sources in this measurement.
- Preliminary results show a competitive precision compared to other experiments.

Conclusions

- My work was focused on the *W*-boson mass measurement for which I developed the muon calibration and a fitting strategy for the uncertainty components.
- Muon calibration work chain shows a good performance with a data-to-simulation agreement at the per mille level.
- Profile likelihood fit improved the m_W and Γ_W precision with respect to 2017 measurement, leading to:

 $m_W = 80366.5 \pm 15.9 (\pm 9.8 \pm 12.5) \text{ MeV}$

 $\Gamma_W = 2202 \pm 47 (\pm 32 \pm 34) \text{ MeV}$

• New measurement of m_W using low pile-up dataset is in progress with preliminary results showing a competitive precision.

BACKUP

Tracking biases

22

- The two most common deformations that bias the curvature (momentum) are:
 - Sagitta bias: rotation of the detector layers (charge dependent).
 - Length-scale bias: radial expansion of the detector layers (charge independent).

Local frame

- Defined in the J/ψ momentum direction.
- This frame is not affected by a boost
- We defined only one angle: ϕ
- Templates are prepared to fit the data

$$\vec{\mu}_{z}^{\text{local}} = \frac{\vec{P}_{J/\psi}}{|\vec{P}_{J/\psi}|} \qquad \vec{\mu}_{x}^{\text{local}} = \frac{\vec{\mu}_{y}^{\text{local}} \times \vec{\mu}_{z}^{\text{local}}}{|\vec{\mu}_{y}^{\text{local}} \times \vec{\mu}_{z}^{\text{local}}|}$$
$$\vec{\mu}_{y}^{\text{local}} = \frac{\vec{\mu}_{z}^{\text{local}} \times z_{\text{ATLAS}}}{|\vec{\mu}_{z}^{\text{local}} \times z_{\text{ATLAS}}|} \qquad \phi_{\text{local}}^{+} = \operatorname{atan}\left(\frac{\vec{p}^{+} \cdot \mu_{y}^{\text{local}}}{\vec{p}^{+} \cdot \mu_{x}^{\text{local}}}\right)$$

24

ID deformation models

• Longitudinal (Z) model:	• Radial (R) model:	• Magnetic field (B) model:			
• Affects the longitudinal component of the momentum.	• Affects the transverse component of the momentum.	• Affects both transverse and longitudinal component of the momentum.			
$ \bullet p_T' = p_T$	$\bullet p_T' = (1 + \varepsilon_R) \cdot p_T$	$\bullet p_T' = (1 + \varepsilon_B) \cdot p_T$			
• $p'_z = (1 + \varepsilon_z) \cdot p_z$	• $p'_z = p_z$	$\bullet p'_z = (1 + \varepsilon_B) \cdot p_z$			
• $\cot\theta' = (1 + \varepsilon_z) \cdot \cot\theta$	• $\cot\theta' = \cot\theta/(1 + \varepsilon_R)$	• $\cot\theta' = \cot\theta$			
$B \rightarrow \qquad $	$B \rightarrow \qquad $	$B' \longrightarrow 0$ $B' \otimes \varphi$			

Length-scale bias

Detector deformations can be studied using the invariant mass in $J/\psi \rightarrow \mu\mu$ decay. Both muons at same φ and different pseudo-rapidity η .

Length-scale bias

Both muons at different φ and same pseudo-rapidity η .

Similar behavior could appear if we expand the radial component (x - y plane).

Data and simulation deformations

27

Correcting the ID deformations

 $\mathbf{28}$

- After correction, an improvement in the scale is obtained (with a small residual).
- An additional step is needed to improve the resolution and remove the residual in scale.

Scale and resolution maps

Scales are found in average $\langle \alpha_{fit} \rangle = (3.12 \pm 0.05) \times 10^{-4}$ while the resolution is about $\langle \beta_{fit} \rangle = (8.55 \pm 0.03) \times 10^{-2}$.

Kinematic categories and uncertainties

The fits are is performed in 28 kinematic categories

Decay channel	$W \to e \nu$	$W ightarrow \mu u$
Kinematic distributions	p_T^ℓ,m_T	p_T^ℓ,m_T
Charge categories	W', W	W', W
$ \eta_{\ell} $ categories	[0, 0.0], [0.0, 1.2], [1.8, 2.4]	[0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]

The following uncertainties are considered:

Experimental uncertainties:

- Lepton calibration, efficiency, recoil calibration
- Luminosity, Multijet (MJ) background

Theoretical uncertainties:

- p_T^W modelling
- Background cross-section uncertainties
- Parton distribution functions (PDFs)
- QCD predictions
- Electroweak corrections

m_W measurement at $\sqrt{s} = 7$ TeV

In each category, a separate fit for p_T^{ℓ} (left) and m_T (right) is performed, followed by a combined fit across all categories. Results show good compatibility.

p_T^ℓ	ATLAS √s = 7 TeV, 4.6/4.1fb	$-^1$, $e_{-/\mu}$ -channel, single- and p_T^ℓ , total unc.	d multi-fits m _W unc.	m_T	ATLAS Vs = 7 TeV, 4.6/4.1fb	p^{-1} , $e^{-/\mu}$ -channel, single- an $m_{\rm T}$, total unc.	id multi-fits m _w unc.
μ, η <0.8, q=–1		‴∭ ———	80434 +41 -41	μ, η <0.8, q=–1	-		80364_{-61}^{+63}
μ, η <0.8, q=+1		- %	80302 +40 -39	μ, η <0.8, q=+1			80376 ⁺⁵⁹ -57
μ, 0.8< η <1.4, q=−1			80370 ⁺⁴³ -43	μ, 0.8< η <1.4, q=−1			80408 ⁺⁵⁹ -58
μ, 0.8< η <1.4, q=+1	-		80342 +40 -40	μ, 0.8< η <1.4, q=+1			80373 ⁺⁵² -50
μ, 1.4< η <2.0, q=−1			80376 ⁺⁴⁹ -50	μ, 1.4< η <2.0, q=–1			80342_{-60}^{+59}
μ, 1.4< η <2.0, q=+1			 80478 ⁺⁴⁹₋₄₉ 	μ, 1.4< η <2.0, q=+1			80439_{-61}^{+60}
μ, 2.0< η <2.4, q=−1			80328 ⁺¹²⁹	μ, 2.0< η <2.4, q=–1			80319 ⁺¹³³
μ, 2.0< η <2.4, q=+1			80360 +120	μ, 2.0< η <2.4, q=+1			80346 +128
<i>e</i> , η <0.6, q=−1	-		80342 ⁺⁴⁶ -45	<i>e</i> , η <0.6, q=−1			- 80463 ⁺⁶⁷ ₋₆₅
<i>e</i> , η <0.6, q=+1		- 11	80291 ⁺⁴⁴ -43	<i>e</i> , η <0.6, q=+1	-		80362 ⁺⁶¹ -59
<i>e</i> , 0.6< η <1.2, q=−1		<u> </u>	80310 ⁺⁴⁵ -45	<i>e</i> , 0.6< η <1.2, q=−1	•		80312 ⁺⁵⁹ -58
<i>e</i> , 0.6< η <1.2, q=+1			80379 ⁺⁴³ -42	<i>e</i> , 0.6< η <1.2, q=+1			80407 ⁺⁵⁶ -54
<i>e</i> , 1.8< η <2.4, q=−1			80378 ⁺⁵⁸ -59	<i>e</i> , 1.8< η <2.4, q=−1			80401 ⁺⁷³ -78
<i>e</i> , 1.8< η <2.4, q=+1	-		80351 ⁺⁵⁰ -51	<i>e</i> , 1.8< η <2.4, q=+1			80388 ⁺⁶¹ -61
Combination			80362 ⁺¹⁶	Combination			80395 ⁺²⁴ -24
	80200	80400	80600		80200	80400	80600

 m_{W} [MeV]

 m_W [MeV]

Γ_W category fits and PDF dependency

 Γ_{W} [MeV]

 Γ_{W} [MeV]

PDF dependency at $\sqrt{s} = 7 \text{ TeV}$

33

Fits are performed for p_T^{ℓ} and m_T using different PDF sets to study the m_W dependency

m_W Nuisance parameters pulls

34