Measurement of the *W*-boson mass with the ATLAS detector

1

Andrés Pinto

05/12/2024

The Standard Model (SM) of particle physics

- Describes strong and Electroweak interactions.
- Explains the electroweak symmetry breaking via the Brout- Englert-Higgs mechanism.
- Particles:
	- **Fermions: quarks and leptons.**
	- Gauge bosons: gluon (g) , photon (Y) , W^{\pm} and Z
	- **Example 3** Scalar boson: Higgs boson (H)

The ATLAS detector

² 3

- Multi-purpose particle detector designed to study fundamental physics.
- **Sub-detectors:** Inner Detector (ID), calorimeters, Muon Spectrometer (MS), and a complex magnetic field.

• Muon system is crucial for triggering and precise measurements, e.g. $pp \rightarrow W \rightarrow \mu \nu$.

Why measuring the W boson mass? ⁴ 4

- The W boson mass (m_W) is important for testing the SM and BSM physics
- BSM scenarios could modify m_W by radiative corrections Δr .
- In the SM, these corrections come mainly from the top-quark and Higgs boson

W boson production and leptonic decay

- In the SM, the W boson can decay in quarks and leptons and its mass is measured in the lepton channels: $W \to \ell \nu$ ($\ell = e^{\pm}, \mu^{\pm}$).
- Higher-order corrections lead to a non-trivial p_T^W distribution that is crucial to control.
- This channel is challenging since the neutrino escapes the detection, and its momentum has to be inferred from other quantities.
- In the detector we measure:
	- **The momentum of the charged lepton,** p_T^{ℓ} **.**
	- **•** The hadronic recoil, u_T
- We can infer:

- **•** The energy of the neutrino: E_T^{miss}
- **•** The transverse mass: m_T

What do we measure? 6

- Observables sensitive to m_W
	- **•** Lepton transverse momentum: p_T^{ℓ}
	- Transverse mass m_T

$$
m_T = \sqrt{2p_T^{\ell}E_T^{miss}(1 - \cos\Delta\phi_{\ell\nu})}
$$

- For p_T^{ℓ} , a good lepton calibration is required.
- For m_T , a precise calibration of u_T is required.
- My work is focused on:
	- Muon momentum calibration
	- Parameter estimation and uncertainty components

Detector calibration

- Muons are reconstructed in the MS and ID. A combined (CB) candidate is formed using the MS + ID.
- Different sources can affect the momentum of the muons in the detector, known as:
	- Sagitta bias

- Inner tracker detector deformations (length-scale bias)
- Magnetic field and resolution mismodelling
- Before calibration, data and simulation are not in good agreement.

Length-scale bias

- To look for ID distortions, we can use the $J/\psi \rightarrow \mu\mu$ resonance in a frame defined in J/ψ direction of flight.
- The invariant mass versus the azimuthal angle scan can provide hints of possible ID deformations in rapidity
- These deformations are modelled using magnetic field distortions and radial distortions
- Final fits show an average bias of about $\langle \varepsilon \rangle$ ~10⁻³
- These maps are used to correct the data

Magnetic field and resolution mismodelling

- After correcting for Sagitta and ID deformations, the next step is to correct for scale and resolution effects.
- The scale effect is modelled as a shift in the transverse momentum,

9

$$
p_T^{scale} = (1 + \alpha) \cdot p_T^{reco}
$$

• The resolution is modelled by smearing the di-muon invariant mass

$$
m_{\mu\mu}^{smear} = m_{\mu\mu}^{true} + (1+\beta) \cdot \left(m_{\mu\mu}^{reco} - m_{\mu\mu}^{true}\right)
$$

• Templates are done to perform a fit of the invariant mass and to map the scale and resolution coefficients of the muons.

Final Muon Momentum Calibration

- After correction, a data-to-simulation agreement at the per mille level within the uncertainties is obtained. Systematics are evaluated by mass window variation.
- Relative systematic uncertainties of 8×10^{-5} in scale and 4×10^{-2} in resolution were found. This is, a precision of about 6 MeV for m_W .

How to measure the W boson mass? ¹² 11

- Once the calibration is done, we can use the corrected simulation to perform a fit data-tosimulation of W boson distributions.
- To extract m_W the template fit method is used.
- Different templates are done for different values of m_W .
- A likelihood function is maximized in order to find the template that best describes the data.
- At 7 TeV, two observables were used p_T^{ℓ} and m_T

Profile Likelihood fit for W mass

• The likelihood is giving by,

Profile Likelihood fit for W mass

• In the <u>Gaussian limit</u>, the likelihood admits an analytical solution (Eur. Phys. J. C, vol. [84, 2024\)](https://inspirehep.net/files/602155a6bf819f0493be312f79af5fd0) that allows to simplify the calculations:

$$
\begin{aligned} -2\ln\mathcal{L}(\vec{\theta},\vec{\alpha})&=\sum_{i,j}\left(m_i-t_i(\vec{\theta})-\sum_r\Gamma_{ir}(\alpha_r-a_r)\right)V_{ij}^{-1}\left(m_j-t_j(\vec{\theta})-\sum_s\Gamma_{js}(\alpha_s-a_s)\right)\\&+\sum_r(\alpha_r-a_r)^2. \end{aligned}
$$

- This approach is particularly useful to study the uncertainty components.
- The systematic components can be properly evaluated.
- This can be generalized to non-Gaussian limits through the global shifted observable method.

Uncertainty components

In the Gaussian limit, the likelihood covariance can be divided in three block matrices:

Pre-fit and Post-fit plots

The post-fit, $|\eta|$ –inclusive p_T^{ℓ} , m_T distributions obtained with CT18 agree with the data within the uncertainties.

m_W measurement at $\sqrt{s} = 7$ TeV

- The final $p_T^{\ell} m_T$ combination is performed using the BLUE approach where the correlation is obtained by pseudo-experiments. CT18 PDF set is chosen as baseline.
- Result agrees with the SM and improvement with respect to 2017 of about 15%.

m_W measurement at $\sqrt{s} = 7$ TeV

• Final result corresponds to,

 $m_W = 80366.5 \pm 15.9 \ (\pm 9.8 \pm 12.5) \ \text{MeV}$

• With uncertainty decomposition,

• In 2017, PDF unc. was ~ 9 MeV and $A_i + p_T^W$ unc. was ~ 8 MeV which means an improvement of about 37% and 45% respectively

Measuring the W width at 7 TeV

- The W-boson width was measured in a similar strategy. This is so far, the most precise measurement of Γ_W .
- Result is consistent with the SM within 2 standard deviations.

 $\Gamma_W = 2202 \pm 47 \ (\pm 32 \pm 34) \text{ MeV}$

• With uncertainty decomposition:

19

Current status in m_W

- Currently, the ATLAS collaboration prepares a new measurement of m_W using low pile-up data set at 5.02 TeV and 13 TeV.
- This dataset is of particular interest since it provides a better resolution in the transverse mass.
- This result in an increased sensitivity of m_T to m_W .
- These conditions provide a good modelling for the transverse momentum of the W boson, p_T^W , which is one of the large uncertainty sources in this measurement.
- Preliminary results show a competitive precision compared to other experiments.

Conclusions

- My work was focused on the *W*-boson mass measurement for which I developed the muon calibration and a fitting strategy for the uncertainty components.
- Muon calibration work chain shows a good performance with a data-to-simulation agreement at the per mille level.
- Profile likelihood fit improved the m_W and Γ_W precision with respect to 2017 measurement, leading to:

 $m_W = 80366.5 \pm 15.9 \ (\pm 9.8 \pm 12.5) \ \text{MeV}$

 $\Gamma_W = 2202 \pm 47 \ (\pm 32 \pm 34) \text{ MeV}$

• New measurement of m_W using low pile-up dataset is in progress with preliminary results showing a competitive precision.

BACKUP

22

Tracking biases

- The two most common deformations that bias the curvature (momentum) are:
	- **Sagitta bias:** rotation of the detector layers (charge dependent).
	- **Length-scale bias:** radial expansion of the detector layers (charge independent).

Local frame

- Defined in the J/ψ momentum direction.
- This frame is not affected by a boost
- We defined only one angle: ϕ
- Templates are prepared to fit the data

$$
\vec{\mu}_{z}^{\text{local}} = \frac{\vec{P}_{J/\psi}}{|\vec{P}_{J/\psi}|} \qquad \qquad \vec{\mu}_{x}^{\text{local}} = \frac{\vec{\mu}_{y}^{\text{local}} \times \vec{\mu}_{z}^{\text{local}}}{|\vec{\mu}_{y}^{\text{local}} \times \vec{\mu}_{z}^{\text{local}}|}
$$
\n
$$
\vec{\mu}_{y}^{\text{local}} = \frac{\vec{\mu}_{z}^{\text{local}} \times z_{\text{ATLAS}}}{|\vec{\mu}_{z}^{\text{local}} \times z_{\text{ATLAS}}|} \qquad \phi_{\text{local}}^{+} = \text{atan}\left(\frac{\vec{p}^{+} \cdot \mu_{y}^{\text{local}}}{\vec{p}^{+} \cdot \mu_{x}^{\text{local}}}\right)
$$

24

ID deformation models

Length-scale bias

Detector deformations can be studied using the invariant mass in $J/\psi \rightarrow \mu\mu$ decay. Both muons at same φ and different pseudo-rapidity η .

Length-scale bias

Both muons at different φ and same pseudo-rapidity η .

Similar behavior could appear if we expand the radial component $(x - y)$ plane).

Data and simulation deformations

Correcting the ID deformations

- After correction, an improvement in the scale is obtained (with a small residual).
- An additional step is needed to improve the resolution and remove the residual in scale.

Scale and resolution maps

Scales are found in average $\langle \alpha_{fit} \rangle$ = (3.12 ± 0.05) × 10⁻⁴ while the resolution is about $\langle \beta_{fit} \rangle = (8.55 \pm 0.03) \times 10^{-2}$.

Kinematic categories and uncertainties

The fits are is performed in 28 kinematic categories

The following uncertainties are considered:

Experimental uncertainties:

- Lepton calibration, efficiency, recoil calibration
- Luminosity, Multijet (MJ) background

Theoretical uncertainties:

- p_T^W modelling
- Background cross-section uncertainties
- Parton distribution functions (PDFs)
- QCD predictions
- Electroweak corrections

m_W measurement at $\sqrt{s} = 7$ TeV

In each category, a separate fit for p_T^{ℓ} (left) and m_T (right) is performed, followed by a combined fit across all categories. Results show good compatibility.

 m_w [MeV]

 m_W [MeV]

Γ_{W} category fits and PDF dependency

32

 Γ_{W} [MeV]

PDF dependency at $\sqrt{s} = 7$ TeV

33

Fits are performed for p_T^{ℓ} and m_T using different PDF sets to study the m_W dependency

m_W Nuisance parameters pulls

