Quantum cosmology as automorphic dynamics

FRIF Day 2024

Victor Godet

LPTHE

December 5th, 2024

2303.16315 and 2303.16316 with T. Chakraborty, J. Chakravarty, P. Paul and S. Raju 2405.09833

Motivation

We are in a golden era of observational cosmology with a wealth of incoming experimental data. On the theory side, we have good effective models that have been widely successful: Λ -CDM and slow-roll inflation (Lucas' talk).

However, we don't have a fundamental understanding of the theory:

- String theory provides a UV completion of gravity but is hard to reconcile with cosmology. (Severin's talk).
- Even the semi-classical theory is not understood: we don't understand quantum gravity in cosmological spacetimes.

This is due to a variety of technical and conceptual issues:

- What is the Hilbert space?
- There are no local observables so how to define gauge-invariant observables?
- Time evolution is "pure gauge" so how to understand dynamics?
- The observer is part of the system.

Semi-classical cosmology

The theory we consider is Einstein gravity with matter in d + 1 dimensions:

$$S = \frac{1}{16\pi G} \int d^{d+1}x \sqrt{-g}(R - 2\Lambda) + S_{\text{matter}} .$$
 (1)

We take $\Lambda>0$ and focus on expanding spacetimes with closed spatial slices.

Two approaches for quantization of a classical system:

- Lagrangian approach: gravitational path integral
- Hamiltonian approach: canonical gravity

The Hartle-Hawking state

The path integral defines objects in the quantum theory by summing over all classical configurations. We obtain a functional of a spatial metric g obtained by summing over all smooth geometries ending on it.

[Hartle-Hawking]

In cosmology, this defines a physical quantum state: the Hartle-Hawking state.

Hartle-Hawking proposed that this is the state describing our universe. However, this appears to be incompatible with observations. [Maldacena, ...]

In any case the gravity path integral is a "blackbox" that is not really understood and cannot be used as a starting point to define the theory.

Canonical quantum gravity

Canonical gravity provides an approach for quantization from first principles: we apply to gravity the canonical method to quantize constrained systems.

[Dirac]

The spacetime is written in a Hamiltonian decomposition

$$ds^{2} = -N^{2}dt^{2} + g_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

and the canonical Hamiltonian is

$$H_{\mathrm{can}} = \int d^d x \left(N \mathcal{H} + N^i \mathcal{H}_i
ight) \; .$$

The lapse and shift behave as Lagrange multipliers. They enforce the Hamiltonian and momentum constraints that are due to the diffeomorphism gauge invariance of gravity. [Arnowitt-Deser-Misner]

The Hamiltonian constraint takes explicitly the form

$$\mathcal{H} = \frac{16\pi G}{\sqrt{g}} \left(\pi_{ij} \pi^{ij} - \frac{1}{d-1} \left(g_{ij} \pi^{ij} \right)^2 \right) - \frac{1}{16\pi G} \sqrt{g} (R - 2\Lambda) + \mathcal{H}_{\mathrm{m}}$$

where π^{ij} is the conjugate momentum of the spatial metric g_{ij} .

Wheeler-DeWitt equation

In the quantum theory, states are wavefunctionals of spatial configurations

$$\Psi[g,\chi]$$
 ĵt g, κ

of the metric g and matter fields $\chi.$ The Hamiltonian constraint becomes an operator equation

$$\widehat{\mathcal{H}} \Psi = 0$$

obtained with $\hat{\pi}^{ij} = -i \frac{\delta}{\delta g_{ij}}$. This leads to a second-order functional equation known as the Wheeler-DeWitt equation:

$$\left[\frac{16\pi G}{\sqrt{g}}\left(\frac{\delta}{\delta g_{ij}}\frac{\delta}{\delta g^{ij}}-\frac{1}{d-1}\left(g_{ij}\frac{\delta}{\delta g_{ij}}\right)^2\right)+\frac{1}{16\pi G}\sqrt{g}(R-2\Lambda)+\widehat{\mathcal{H}}_{\rm m}\right]\Psi=0,$$

which determines the physical states. The Hilbert space of quantum cosmology is the space of solutions of this equation. [Wheeler, DeWitt]

The difficulty in solving this equation has been one of the main stumbling block in developing the canonical approach.

Late time expansion

We focus on expanding universe so the large volume regime is also the late time regime. We take the "canonical time" to be the spatial volume

$$T = \int d^d x \sqrt{g} \ . \tag{2}$$

The expansion can be achieved by introducing intermediate variables Ω,γ_{ij} such that

$$g_{ij} = \Omega^2 \gamma_{ij}, \qquad \det(\gamma_{ij}) = 1,$$
 (3)

and taking the limit $\Omega \to +\infty$.

Different terms in the Wheler-DeWitt equation have different scalings with Ω . This allows to solve the equation order by order in Ω .

The solution can be expanded in the form

$$\Psi[g,\chi] = \exp\left[i(X_d + \dots + X_0) + O(\Omega^{-1})\right]$$
(4)

where X_k scales as Ω^k .

Late time expansion

The Wheeler-DeWitt equation can be solved at large volume, *i.e.* in the late time expansion of an asymptotically de Sitter spacetime.

[Chakraborty-Chakravarty-VG-Paul-Raju]

The Hilbert space as theory space

The late time solutions then take the form

$$\Psi[g,\chi] = e^{iS[g,\chi]} Z[g,\chi]$$
(5)

where $S[g, \chi]$ is a universal divergent phase viewed as a counterterm.

The Wheeler-DeWitt equation is equivalent to the Weyl anomaly equation:

$$\Omega \frac{\delta}{\delta \Omega} Z = \mathcal{A}_d Z \ . \tag{6}$$

Thus the Hamiltonian and momentum constraints become at late time the Ward identities for the Weyl \times diff symmetry of a CFT partition function.

As a result, we can view the wavefunction $Z[g, \chi]$ as the partition function of a CFT_d on the metric g and with sources χ :

$$Z[g,\chi] \sim Z_{\rm CFT}[g,\chi] = \langle e^{-\int d^d x \,\chi\phi} \rangle_{\rm CFT}^{g_{ij}} \tag{7}$$

This gives a description of the Hilbert space at future infinity: it is the space of all CFT partition functions.

[Chakraborty-Chakravarty-VG-Paul-Raju]

Relation to dS/CFT

The analytic continuation $\ell_{\rm AdS}=i\ell_{\rm dS}$ gives a way to relate AdS/CFT results to dS. This is the dS/CFT philosophy.

[Strominger, Maldacena, ...]

However, the role played by the CFT is quite different in cosmology.

In AdS/CFT, $Z_{CFT} = Z_{AdS}$ computes the AdS partition function. So AdS quantum gravity is described by a single CFT.

In cosmology, $Z_{\rm CFT} = \Psi_{\rm dS}$ describes a physical state at late time. The cosmological Hilbert space is the space of all CFT partition functions.

Time evolution and automorphic dynamics

The state at late time can be viewed as a CFT partition function. Then time evolution corresponds to running the renormalization group flow.

Another perspective: cosmological spacetimes correspond to particle trajectories on the moduli space \mathcal{M} of spatial metrics. This suggests that quantum cosmology is equivalent to automorphic dynamics: the theory of a particle on moduli space.

The Einstein-Hilbert action is the worldline action of the particle and the Wheeler-DeWitt equation is the corresponding Klein-Gordon equation. The sum over particle trajectories is the sum over geometries in the gravity path integral.

Pure 3d cosmology

Pure quantum cosmology in three dimensions is described by the action

$$S = \frac{1}{16\pi G} \int_{M} d^{3}x \sqrt{-g} \left(R - 2\right) - \frac{1}{8\pi G} \int_{\partial M} \sqrt{h} K .$$
 (8)

We focus on spacetimes of the form $\mathbb{R}\times\Sigma$ where Σ is a torus:

$$ds_{\Sigma}^{2} = T \frac{|du + \tau dv|^{2}}{y}, \qquad \tau = x + iy \in \mathbb{H}/\mathrm{PSL}(2,\mathbb{Z}) .$$
(9)

The classical solutions are inflationary universes with torus slices starting from a singularity. They are analytic continuations of the BTZ geometries in AdS_3 . [Castro-Malonev]

Pure 3d cosmology

• The wavefunctions are modular form which can be viewed as CFT₂ partition functions

$$\Psi(T, \tau = x + iy), \quad \tau = x + iy \in \mathcal{F} = \mathbb{H}/\mathrm{PSL}(2, \mathbb{Z})$$
 (10)

• The Wheeler-DeWitt equation reduces to a Klein-Gordon equation on the auxiliary spacetime

$$ds^2_{\rm Aux} = dT^2 - T^2 \frac{dx^2 + dy^2}{y^2}, \qquad (\Box + M^2) \Psi = 0, \qquad M = \frac{\pi}{2G} \ ,$$

which determines the evolution in \boldsymbol{T} of the wavefunction.

• The resulting dynamics is equivalent to the $T\overline{T}$ deformation of the CFT₂ partition function: a solvable irrelevant deformation. [Zamolodchikov, ...]

The Hilbert space is the space $L^2(\mathbb{H}/\mathrm{PSL}(2,\mathbb{Z}))$ of modular cusp forms which plays an important role in number theory. In particular, we obtain a number-theoretic interpretation of the Hartle-Hawking state in this setting.

Takeaways

- We should understand better quantum cosmology. It is our best hope to connect theoretical quantum gravity ideas to experiments.
- Canonical quantum gravity provides an approach from first principles. The Wheeler-DeWitt equation can be solved in a late time expansion and the Hilbert space is the space of CFT partition functions.
- The dynamics can be view as a renormalization group flow.
- The three-dimensional case gives a solvable toy model with interesting connections to number theory.

Thank you!