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Gravitational-wave astronomy
• The direct detection of gravitational waves from 

merging binary systems sparked an explosive 
growth in the field of gravitational-wave 
astronomy. 

• Unique opportunity to test general relativity in the 
strong-field regime, shed light on the fundamental 
aspects of gravity and black holes, probe the 
fundamental nature of astrophysical compact 
objects. 

• Extraordinary scientific potential of upgraded 
detectors and future facilities.

• We are witnessing the dawn of the era of precision physics with gravitational waves. 
[Berti et al. ’15], [Barack et al. ’18],  [Cardoso and Pani ’19], [Baibhav et al. ‘19], [Barausse et al. ’20], [Perkins, Yunes and Berti ’20], [Bailes et al. 
’21], [Berti et al. ’22]…
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Symmetries of black holes

• Black hole perturbation theory has a long history starting from the work of Regge and 
Wheeler, Zerilli, Teukolsky, Chandrasekhar… 

• Interestingly, recent investigations suggest the subject has depths yet to be plumbed.
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Symmetries of black holes

• “The black holes of nature are the most perfect macroscopic objects there are in the 
universe: the only elements in their construction are our concepts of space and 
time.” 
(S. Chandrasekhar, “The mathematical theory of black holes”) 
  

• Black holes are among the simplest and most robust objects in nature: uniquely 
determined by their mass and spin (and charge). 

• This simplicity is inherited by the perturbations. 

• Some aspects of this simplicity are well understood in terms of (hidden) symmetries of 
general relativity. 
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Outline

I will focus on static perturbations and tidal Love numbers of black holes in general 
relativity.

Luca Santoni



Static response and tidal deformability
• The Love numbers are the coefficients encoding the (conservative) tidal deformability of 

a compact object (analogous to the electric and magnetic susceptibilities in EM).

• In EM we solve : 
 

• The boundary condition at  fixes , while  and  are determined by regularity 
conditions across the surface (continuity of  and ). 

• For instance, if , one finds   (  and  are the vacuum and 

dielectric permittivities). 

•  are the coefficients of the induced response.

⃗∇2Φ = 0
Φext = ∑

ℓ

Aℓ [rℓ + kℓr−ℓ−1] Pℓ(cos θ) , Φint = ∑
ℓ

BℓrℓPℓ(cos θ) .

r = + ∞ Aℓ kℓ Bℓ⃗E ∥
⃗D⊥

⃗E 0 = A1 ̂z kℓ=1 = −
ϵ/ϵ0 − 1
ϵ/ϵ0 + 2
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[Credit: T. Hinderer]

Tidal deformability of compact objects

• Love numbers and dissipative numbers carry relevant information about the object’s 
structure and interior dynamics: 

 

_ equation of state of neutron stars; [Flanagan and Hinderer ’07], [Vines, Flanagan and Hinderer ’11], [Bini, Damour and Faye 
’12], [Baiotti and Rezzolla ’17], […] 
 

_ physics at the horizon of black holes and fundamental aspects of gravity in strong-field 
regime; [Hui, Joyce, Penco, LS and Solomon ’21, ’22], [Charalambous, Dubovsky and Ivanov ’21], […] 
 

_ new physics and existence of new types of compact objects. 
[Franzin et al. ’17], [Cardoso et al. ’17], [Cardoso and Pani ’19], […]
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• One can distinguish between conservative response (Love 
numbers) and dissipative response (tidal heating). 
[Fang and Lovelace ’05], [Damour and Nagar ’09], [Binnington and Poisson ’05] 

• Tidal effects change the dynamics during the inspiral.



Tidal deformability of compact objects
• The measurement of tidal deformation is challenging with current detectors. 

• In the Post-Newtonian (PN) regime of the inspiral, leading-order tidal effects are 
associated with tidal heating: start from 2.5PN order for spinning objects and 4PN order 
for non-rotating ones. [Poisson and Sasaki ’94], [Tagoshi et al. ’97], [Blanchet ’13], […] 

Conservative effects start from 5PN. [Damour ’83], [Porto ’16], […] 

• Example of constraints on tidal heating from LKV O1-O3 data: [Chia, Zhou and Ivanov ’24]. 
Constraints on black hole dissipative coefficients still 2 orders of magnitudes larger than 
theoretical value. 

• We can search for exotic compact objects (e.g., boson stars, DM stars…) with large . 
Example of matched-filtering search for binaries with compact objects with 

: [Chia et al. ’23]. 

• Precise measurements of tidal coefficients possible 
in the future. 
[Piovano, Maselli, Pani ’22], [Maggiore et al ’19], [Iacovelli et al ’23], […]

λ

102 ≲ λ ≲ 106
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Tidal Love numbers of black holes

• In linear perturbation theory, an explicit calculation in general relativity shows that  
Love numbers of black holes vanish, as opposed to other types of compact objects: 
 
_ Schwarzschild BHs: [Fang and Lovelace ’05], [Binnington and Poisson ‘09], [Damour and Nagar ’09], […] 
_ Kerr BHs: [Le Tiec, Casals ’20], [Le Tiec, Casals, Franzin ’20], [Chia ’20], [Charalambous, Dubovsky, Ivanov ’21], […] 
_ Reissner–Nordström BHs: [Cardoso et al. ’17], [Rai and LS ’24] 

• This is special of 4D general relativity: Love numbers are nonzero for different objects, 
modified gravity theories, BHs in higher spacetime dimensions. 

• As opposed to the EM example, the calculation of the induced response in general 
relativity is affected by ambiguities in the choice of coordinate system, source/response 
split, and nonlinearities. 
[Kol and Smolkin ’11], [Hui, Joyce, Penco, LS, Solomon ’20], [Le Tiec, Casals ’20], [Charalambous, Dubovsky, Ivanov ’21], […]
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Point-particle effective theory
• There is a completely unambiguous way of defining the tidal response coefficients based 

on an effective field theory. [Goldberger and Rothstein ’04, ’05, …], [Kol and Smolkin ’11], [Porto ’16] 

• Let us consider e.g. a scalar field around a black hole:  

 

                                

•  are the Love number coefficients. 

• One generically expects:  and to find (classical) RG running. 

• After matching with the UV result:  in D=4 and no running. 

• Generically non-zero in D>4. 
[Kol and Smolkin ’11], [Hui, Joyce, Penco, LS and Solomon ’21], 
[Charalambous and Ivanov ’23], [Rodriguez, LS, Solomon and Temoche ’23]
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Point-particle effective theory

• Following ’t Hooft’s naturalness principle, the vanishing of the Love numbers in D=4 is a 
naturalness puzzle from an EFT perspective. [Rothstein ’14], [Porto ’16] 

 

• Looks like something that can very likely follow from a symmetry in the theory.
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Symmetries of vanishing Love numbers
• In [2105.01069] we showed that the vanishing of Love numbers is the consequence of linearly 

realized symmetries governing static perturbations around black holes. 

• Take the Klein—Gordon equation with  (static limit): 

 ,                  . 

• The raising and lowering operators 
                        ,              
are a symmetry of the static KG equation — they “commute” with the “Hamiltonian” 

 ,              , 
 ,               

• This representation has a “ground state”, , which satisfies  . 
The good ground state (regular at the horizon) is , s.t.  . 

• From this one, apply a string of raising operators to construct the solution at level , 
. This is a polynomial in .

ω = 0

∂r (Δ∂rϕℓ) − ℓ(ℓ + 1)ϕℓ = 0 Δ = r(r − rs)

D+
ℓ ≡ − Δ∂r+

ℓ + 1
2 (rs − 2r) D−

ℓ ≡ Δ∂r+
ℓ
2 (rs − 2r)

Hℓ ≡ − Δ∂r (Δ∂r) + ℓ(ℓ + 1)Δ Hℓϕℓ = 0
Hℓ+1D+

ℓ = D+
ℓ Hℓ Hℓ−1D−

ℓ = D−
ℓ Hℓ .

ℓ = 0 ∂r (Δ∂rϕ0) = 0
ϕ0 = const. D−

0 ϕ0 = 0

ℓ
ϕℓ = D+

ℓ−1D
+
ℓ−2⋯D+

0 ϕ0 r
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Symmetries of vanishing Love numbers

 ,                  . 

• One could have chosen an  state such that it goes as  as . 
This is not a good ground state: . 

• The vanishing of the Love numbers (absence of  falloff) follows from two facts: 
 
(a) the existence of a ladder structure (generalized special conformal symmetry) allowing 
one to connect any level-  solution to the level-0 solution; 
 
(b) the good level-0 solution obeys a first-order differential equation, thus connecting a 
single (regular) asymptotic behavior at the horizon with a single ( ) asymptotic behavior 
at large . 
[Hui, Joyce, Penco, LS and Solomon ’21, ’22], [Achour, Livine, Mukohyama, Uzan ’22]

∂r (Δ∂rϕ0) = 0 Δ = r(r − rs)

ℓ = 0 1
r r → ∞

∼ log(r − rs) as r → rs

r−ℓ−1

ℓ

rℓ

r
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Symmetries of vanishing Love numbers
• The symmetry has a geometric origin: it arises from the (E)AdS isometries of a 

dimensionally reduced black hole spacetime.  
Static scalar action on a Schwarzschild background: 

                     . 

After a Weyl rescaling, the metric becomes  with 
 
                                
 

 

 
where . The space has 6 Killing vectors: 3 rotations and 3 translations (or 
“boosts”). The translation that mixes  and  acts on the original  as 
                                         
or, equivalently, 
                                              .

S =
1
2 ∫ dθdφdr g ϕ □ ϕ , ds2 = dr2 + Δ (dθ2 + sin2 θ dφ2)

EAdS3

g̃ij = Ω2gij , ϕ̃ = Ω− 1
2 ϕ , where Ω ≡ L2/Δ ,

S =
1
2 ∫ d3x g̃(ϕ̃ □̃ ϕ̃ +

r2
s

4L4
ϕ̃2) , ds̃2 = dr2

⋆ +
4L4

r2
s

sinh2( r⋆rs

2L2 )(dθ2 + sin2 θ dφ2)

dr⋆ = (L2/Δ)dr
r⋆ θ ϕ

δϕ = − 2Δ cos θ∂rϕ + (rs − 2r)∂θ(sin θ ϕ)

δϕℓ = cℓ+1D−
ℓ+1ϕℓ+1 − cℓD+

ℓ−1ϕℓ−1

[Hui, Joyce, Penco, LS and Solomon ’21]
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Symmetries of vanishing Love numbers

• At large r,  reduces to a SCT,   . 

• We claim that this is the infrared symmetry that forbids Love number couplings in the 
point-particle effective action. 

• Straightforward the generalization to Kerr and higher spins. [Hui, Joyce, Penco, LS and Solomon ’21] 
Similar conclusions for Reissner—Nordström (although slightly more involved). [Rai and LS ’24]

δϕ δϕ = ci(xi − ⃗x2∂i + 2xi ⃗x ⋅ ⃗∂ )ϕ

[Hui, Joyce, Penco, LS and Solomon ’21]
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Outlook and conclusions



Nonlinear tidal effects

• Nonlinearities in the Einstein field equations affect the tidal response of a compact 
object. 

• In electromagnetism, the nonlinear polarization of an optical medium can be studied in 
nonlinear polarization theory. 
 
- What is the nonlinear static response of a black hole? 
- Are the symmetries of [Hui, Joyce, Penco, LS and Solomon ’21, ’22] an ‘accident’ of linear response 
theory, or do they admit an extension to nonlinear order?
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Nonlinear tidal effects
• The worldline EFT naturally provides a framework for describing nonlinear deformation 

of compact objects. 
[Bern et al ’20], [Riva, LS, Savić, Vernizzi ’23], [Iteanu, Riva, LS, Savić, Vernizzi ’24] 

• In the scalar field example, one shall just add operators with more powers of : 
 

                                   

 
For gravitational waves, one shall replace  with metric perturbations. 

• In [Riva, LS, Savić, Vernizzi ’23], [Iteanu, Riva, LS, Savić, Vernizzi ’24], we showed that quadratic Love numbers of 
Schwarzschild black holes are zero in general relativity. 
(See also [Gürlebeck ’15], [Poisson ’20, ’21], [De Luca, Khoury, Wong ’23])  

• In [Combaluzier-Szteinsznaider, Hui, LS, Solomon, Wong ’24], we showed that the ladder symmetries admit a 
fully nonlinear extension to all orders in perturbation theory (for axisymmetric and static 
spacetimes) and form an  algebra. 
(See also [Kehagias, Riotto ’24])

ϕ

S = −
1
2 ∫ d4x (∂ϕ)2 − M∫ dτ + ∫ dτ λℓ,n∂ℓϕn

ϕ

𝔰𝔩(2,ℝ)
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Conclusions and open directions

• What is the nonlinear tidal deformability of a Kerr black hole? 

• Black holes with charge? Higher spacetime dimensions? 

• Quantify importance of nonlinearities in late inspiral of compact objects with future 
interferometers.
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Backup



Nonlinear tidal effects

• The worldline EFT naturally provides a framework for describing nonlinear deformation 
of compact objects. 
[Bern et al ’20], [Riva, LS, Savić, Vernizzi ’23], [Iteanu, Riva, LS, Savić, Vernizzi ’24] 

 

 ,         ,         , 

    where  and, schematically, 

•  carry information about the object’s finite-size properties and microscopic physics: 
absorption across the horizon, dissipation, tidal response… 

S = SEH + Spp + Sint

SEH =
M2

Pl

2 ∫ d4x −g R Spp = − M∫ dτ Sint =
∞

∑
ℓ=2

∫ dτ (QμL
E EμL

+ QμL
B BμL) + …

μL ≡ μ1⋯μℓ

QμL
E,B
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QμL
E

EμL

 ,         , 

 .

Eμ1⋯μℓ
∼ ∇μ1

⋯∇μℓ−2
Eμℓ−1μℓ

Bμ1⋯μℓ
∼ ∇μ1

⋯∇μℓ−2
Bμℓ−1μℓ

Eμν ≡ Cμρνσuρuσ, Bμν ≡
1
2

εγμ
αβCνδαβuδuγ



Nonlinear tidal Love numbers

• To define nonlinear response, we shall proceed as in EM. Focusing e.g. on -sector: 
 

                  , 

 
where  is the -order response function.  

• To leading-order in the derivative expansion (quadrupole), considering non-rotating 
objects and conservative sector, 

 

                      

 

and  boils down to local contact operators: 
 

               .

E

⟨QiL
E (τ)⟩ =

∞

∑
n=1

∫ dτ1⋯∫ dτn
(n)ℛiL|iL1

⋯iLn(τ − τ1, …, τ − τn)EiL1
(τ1)⋯EiLn

(τn)

(n)ℛ nth

(n)ℛij|i1 j1⋯in jn ⊃ δi
jnδ

j
i1
δ i2

j1
δ j2

i3
⋯δ jn−1

in
δ(τ − τ1)⋯δ(τ − τn) + perms.

Sint

Sint = ∫ dτ
∞

∑
n=1

[λ(E)
n Eμ1

μ2⋯Eμn+1
μ1 + higher multipoles] ∼ ∑

n,l
∫ dτ λ(E)

l,n ∂lEn+1
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Nonlinear tidal Love numbers

•  are the (nonlinear) Love numbers. 

• As in any EFT,  can be either constrained experimentally or determined via matching 
to some explicit UV model. 

• In [Riva, LS, Savić, Vernizzi ’23], [Iteanu, Riva, LS, Savić, Vernizzi ’24] we computed the quadratic Love numbers of 
BHs by matching with GR: 
 

λ(E)
l,n

λ(E)
l,n

Sint = ∫ dτ [λ(E)
1 EijEij + λ(B)

1 BijBij + λ(E)
2 Ei

jEj
kEk

i + λ(EB)
2 Ei

jBj
kBk

i + higher multipoles]
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Feynman diagrams for the (a) linear and (b) 
nonlinear tidal deformation. 

These vertices scale as .∼ 1/rℓ+1

Sint = ∫ dτ
∞

∑
n=1

[λ(E)
n Eμ1

μ2⋯Eμn+1
μ1 + higher multipoles] ∼ ∑

n,l
∫ dτ λ(E)

l,n ∂lEn+1



Nonlinear equations for static perturbations 
• There are two expansion parameters:  

_  which controls nonlinearities of gravity; 
_ : the amplitude of the external tidal field. 

• At quadratic order, the (static) equations are schematically:      . 
Solving perturbatively as  and imposing regularity at the horizon, one 
can find the nonlinear solution for . 

• . As an example, let us focus on . 
In the Regge—Wheeler gauge, the most general parametrization of  is: 
 

                      . 

• After some algebra, the Einstein equations boil down to 

 

                                  ,        where . 

κ ≡ 1/MPl
ℰ

𝒟δg ∼ κ δg2

δgμν = δg(1)
μν + κδg(2)

μν
δgμν

δgμν = δgeven
μν + δgodd

μν δgeven
μν

δgeven
μν

δgeven
μν (r, θ, ϕ) = ∑

ℓm

diag [(1 −
rs

r ) H0(r), H2(r), K(r), sin2 θ K(r)] Ym
ℓ (θ, ϕ)

H′￼′￼0 +
2r − rs

r(r − rs)
H′￼0 −

ℓ(ℓ + 1)r(r − rs) + r2
s

r2(r − rs)2
H0 = SH0

SH0
∼ O(δg2)
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Nonlinear equations for static perturbations 
• Let us assume that the external tidal field is a quadrupole: asymptotically, .  

• The solution to the linearized equation is , which is notoriously a 
polynomial (i.e., no induced linear static response). 

•  contains a product of 3 spherical harmonics: 

                                , 

which enforces the standard angular momentum selection rule , i.e. 
 and . 

• If     0, 2, 4. At the next order: 

 . 

• Note that the quadratic terms in  are small corrections as long as .

H(ℓ=2,m)
0 ∼ ℰr2

H(ℓ=2,m)
0 = ℰ (r2 − rsr)

SH0
∼ O(δg2)

𝒢ℓ,ℓ1,ℓ2
m,m1,m2

≡ ∫ Ym*
ℓ (θ, ϕ)Ym1

ℓ1
(θ, ϕ)Ym2

ℓ2
(θ, ϕ)sin θdϕdθ

ℓ = ℓ1 ⊗ ℓ2
|ℓ1 − ℓ2 | ≤ ℓ ≤ ℓ1 + ℓ2 m = m1 + m2

ℓ1 = ℓ2 = 2 ⇒ ℓ =

H(ℓ=2,m′￼)
0 = ℰ (r2 − rsr) [δm′￼

m −
ℰ

4r2
s

𝒢2,2,2
m′￼,m,mr(2r + 3rs)]

ℰ ℰr2 ≪ r2
s
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Matching with point-particle EFT

• The full quadratic static solution 

                                

should then be compared (after a suitable gauge transformation) with 

H(ℓ=2,m′￼)
0 = ℰ (r2 − rsr) [δm′￼

m −
ℰ

4r2
s

𝒢2,2,2
m′￼,m,mr(2r + 3rs)]
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• The result of the matching (in the region ) is: 
 

 . 

rs ≪ r ≪ rs / ℰ

λ1 = λ2 = 0 [Riva, LS, Savic, Vernizzi ’23]

  .∼
1

rℓ+1



Vanishing of quadratic Love numbers
• The result can be extended to the odd sector and to all multipoles.  

 , 

 , 

      where  . 

• We show that, for all ’s, the structure of the eqs in GR is so special that, up to second 
order in PT, the solutions  and  are simple polynomials in . 

• This follows from: (a) the simple form of the source, and (b) the general properties of the 
homogeneous (hypergeometric) solutions: 

H′￼′￼0 +
2r − rs

r(r − rs)
H′￼0 −

ℓ(ℓ + 1)r(r − rs) + r2
s

r2(r − rs)2
H0 = SH0

h′￼′￼0 −
ℓ(ℓ + 1)r − 2rs

r2(r − rs)
h0 = Sh0

SH0
, Sh0

∼ O(δg2)

ℓ
H0 h0 r

h0(r) = h0,1(r)∫
r/rs

1
dy h0,2(y)Sh0

(y) − h0,2(r)∫
r/rs

dy h0,1(y)Sh0
(y)
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Vanishing of quadratic Love numbers

• In the EFT, all linear and quadratic Love number couplings vanish: 

 

 
 

 .

Sint ∼ ∫ dτ [λ(E)
1,n (∂nE)2 + λ(B)

1,n (∂nB)2 + λ(E)
2,nml∂

nE ∂mE ∂lE + λ(EB)
2,nml∂

nE ∂mB ∂lB + …]

λ(E)
1,n = λ(B)

1,n = λ(E)
2,nml = λ(EB)

2,nml = 0
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Vanishing of quadratic Love numbers
• The point-particle EFT can be matched to the full solution without turning on Love 

number couplings. 
Nonlinear corrections to the static solution in GR can be reconstructed from the EFT, to all 
orders in , via just graviton bulk nonlinearities.rs
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Feynman diagrams that reconstruct the 
Schwarzschild metric up to .O(r2

s )

Diagram (a) yields the order-  correction 
to the linear tidal field solution. 

 
  

Diagrams (b), (c) and (d) represent order-  
corrections to the tidal source at second 

order in the external field amplitude.

rs

rs


