# REALISTIC VACUA IN THE STRING LANDSCAPE

#### Severin Lüst

Laboratoire Charles Coulomb Montpellier



FRIF Day 2024
Paris, December 5





#### PERSONAL INTRODUCTION



Since Jan. 2023:

**L2C** in Montpellier







**Spring 2025**:









**Research interests:** 

String Theory & String Phenomenology, Supergravity, AdS/CFT Holography, Black Holes, Swampland Constraints, ...

#### STRING THEORY

> Fully consistent theory of quantum gravity



- ➤ Provides important insights on formal aspects of QFT, Quantum Gravity, Holography, ...
- > many highly non-trivial connection to Mathematics

- However: Contact with experiment is challenging!
  - stringy effects at almost arbitrarily high energy scales  $\lesssim M_{pl}$
  - huge Landscape of possible models
  - unclear if it allows for realistic backgrounds

#### REALISTIC STRING VACUA

Any realistic string theory vacuum should have (at least):

➤ four macroscopic spacetime dimensions



broken / no supersymmetry



dark energy / positive cosmological constant



Standard Model matter(gauge groups, chiral fermions, ...)



#### REALISTIC STRING VACUA

Any realistic string theory vacuum should have (at least):

➤ four macroscopic spacetime dimensions



broken / no supersymmetry



dark energy / positive cosmological constant



| Standar                                | d Model                           | del of Elementary Particles         |                                        |       |
|----------------------------------------|-----------------------------------|-------------------------------------|----------------------------------------|-------|
| three generations of matter (fermions) |                                   |                                     | interactions / force carriers (bosons) |       |
|                                        |                                   |                                     |                                        |       |
|                                        |                                   |                                     |                                        |       |
| % U                                    |                                   | %<br>%                              |                                        | : H   |
| up                                     | charm                             | top                                 | gluon                                  | higgs |
| 54.7 MeV/c² -½ d down                  | =93.5 MeV/c² -% % S strange       | =4.183 GeV/C <sup>2</sup> -½ bottom | o y photon                             |       |
| =0.511 MeV/c² -1 1/2 electron          | π105.86 MeV/c² -1 ½ μ             | #1,77693 GeV/c²                     | 291.188 GeV/c <sup>1</sup> 0 1 Z boson |       |
| co.s ev/c²  Ve electron neutrino       | <0.17 MeV/c² 0 ½ Vµ muon neutrino | <18.2 MeV/c³ 0 ½ VT tau neutrino    | #1 W boson                             |       |

#### **KNOWN STRING VACUA**

String theory backgrounds that we understand well have:

- $\triangleright$  extended ( $\mathcal{N} \ge 2$ ) supersymmetry
- negative or vanishing cosmological constant (AdS or Mink.)

side note:

SUSY breaking and positive vacuum energy (e.g. de Sitter) are related (no SUSY algebra with unitary representations in de Sitter)

Unknown whether string theory has (meta-)stable

1- Citton --- at al

e Sitter vacua!

#### **COMPACTIFICATION AND MODULI**

Compactification: 4D physics from higher dimensions:



> Fundamental problem of string compactifications:

#### Broken Supersymmetry:

Quantum effects: generate a potential for moduli!



potential from first order quantum corrections:

$$\lim_{\phi \to \infty} V = 0$$

(assume  $\phi \to \infty \Leftrightarrow g(\phi) \to 0$ )

potential from first order quantum corrections:



(assume  $\phi \to \infty \Leftrightarrow g(\phi) \to 0$ )



potential from first order quantum corrections:

$$\lim_{\phi \to \infty} V = 0$$



take higher order corrections into account:

 $\lim V = 0$  $\phi \rightarrow \infty$ 

(assume  $\phi \to \infty \Leftrightarrow g(\phi) \to 0$ )



dS vacuum?!

take higher order corrections into account:

$$\lim_{\phi \to \infty} V = 0$$



at minimum of V:

 $\begin{array}{c} \text{higher order} \\ \text{corrections} \end{array} \approx \begin{array}{c} \text{first order} \\ \text{corrections} \end{array}$ 

strong coupling!
no perturbative control!

#### FLUX COMPACTIFICATION

➤ Possible solution to the Dine-Seiberg problem:

Generate a potential at the classical / tree-level



non-vanishing p-form field strengths  $F_{m_1...m_p} \neq 0$  along cycles of the internal geometry

> Fluxes generate a potential:

$$V_F \sim \int \sqrt{g} g^{m_1 n_1} \dots g^{m_p n_p} F_{m_1 \dots m_p} F_{n_1 \dots n_p}$$

- fixes size of cycles (= moduli) classically
- avoid Dine-Seiberg if  $V_F$  has minimum at  $|\phi| \gg 1$

#### THE FLUX LANDSCAPE

Many different compactification spaces (Calabi-Yau manifolds)

Many different fluxes
per compactification space
(complicated topology)



HUGE Landscape of string theory vacua!

#### THE FLUX LANDSCAPE

Many different compactification spaces (Calabi-Yau manifolds)

Many different fluxes
per compactification space
(complicated topology)



HUGE Landscape of string theory vacua!





High probability for vacua with:

[Bousso, Polchinski '00]

a) positive but tiny cosmological constant  $(0 < \Lambda \ll 1)$ 

b) control over quantum corrections  $(|\phi| \gg 1)$ 

- ➤ Problem A:
- most flux vacua not computed explicitly!
- ➤ Problem B:

not all flux choices give a consistent vacuum!



How large is the Landscape of consistent vacua?

➤ Constraint on fluxes: Fluxes carry a positive charge!

example: 3-form flux on Calabi-Yau manifold 
$$Y_6$$
:

$$Q_{flux} = \int_{Y_6} F_3 \wedge H_3$$

➤ Tadpole cancellation: total charge in compact space = 0 (flux lines need to end somewhere)



➤ Tadpole cancellation: total charge in compact space = 0

$$Q_{\rm flux} = Q_{\rm top}$$
 flux to stabilize N moduli in internal space negative topological charge

Scaling of both charges with number of moduli:

#### Tadpole Conjecture:

$$Q_{\rm flux} \gtrsim \alpha N_{\rm moduli}$$

#### Topology:

$$Q_{\text{top}} = \frac{\chi}{24} \sim \frac{1}{4} N_{\text{moduli}} + \mathcal{O}(1)$$
( $\chi$ : Euler number of internal space)

$$\alpha \approx 0.44 > \frac{1}{4}$$

$$\Rightarrow Q_{\text{flux}} \sim N_{\text{moduli}} \sim \mathcal{O}(1)$$





no stabilization if

$$N_{\rm moduli} \gg 1$$



Landscape much smaller than expected?!

## Are there vacua in the Landscape with a very small cosmological constant?

Laboratory: Supersymmetric flux vacua

Flux vacua without SUSY breaking:



negative cosmological constant

 $\Lambda < 0$ 

Anti de Sitter (AdS) vacuum

Idea: Use AdS/CFT holography!

Gravity on
Anti-de Sitter space in
d-dimensions



conformal field theory (QFT) in (d-1)-dimensions

#### HOLOGRAPHY AND KKLT

[SL, Vafa, Wiesner, Xu '22]

➤ flux vacuum (without susy breaking):

4D SUSY AdS

$$\left| \Lambda_{AdS} \right| \ll 1$$



➤ Holographic dual:

(2+1)D Conformal Field Theory (CFT)

$$\left|\Lambda_{AdS}\right|^2 \sim \frac{1}{c}$$
 central charge (# degrees of freedom of CFT)

- → D-branes wrapped on internal space
- ➤ Degrees of freedom of D-branes:

Result: 
$$c \lesssim \chi \sim N_{\text{moduli}}$$
Tadpole Problem



#### **OUTLOOK: STRING VACUA IN THE INTERIOR OF MODULI SPACE?**

No realistic vacua in weak coupling / supergravity limit of string theory?

#### OUTLOOK: STRING VACUA IN THE INTERIOR OF MODULI SPACE?

No realistic vacua in weak coupling / supergravity limit of string theory?



#### OUTLOOK: STRING VACUA IN THE INTERIOR OF MODULI SPACE?

No realistic vacua in weak coupling / supergravity limit of string theory?

Cartoon of parameter / moduli space:

string / quantum corrections

become relevant:

Dine-Seiberg / control problems!

strongly coupled / non-geometric interior: realistic string vacua?



asymptotic boundaries: weak coupling limits

Outlook:

weak coupling behaviour of potential  $V(\phi)$ 



information on string vacua in the interior of moduli space?

### THANK YOU!