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Why inviting a primordial cosmologist to the FRIF Day?

Fundamental Interactions
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Why inviting a primordial cosmologist to the FRIF Day?

Fundamental Interactions

Primordial fluctuations undergo gravitational 
collapse into structures

Gravity

PRIMORDIAL 
COSMOLOGY
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Cosmic Microwave Background

Large-scale distribution of galaxies



Why inviting a primordial cosmologist to the FRIF Day?

Gravity

Particle physics

PRIMORDIAL 
COSMOLOGY

Fundamental Interactions

3

𝒎/𝑯

Cosmic spectroscopy

3
+ 𝜁3

cosmological observations initial conditions particle content in the early universe

𝕡(m/H)
𝜁 is the primordial 

curvature perturbation
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Why inviting a primordial cosmologist to the FRIF Day?

String theory

Fundamental InteractionsGravity

Particle physics

PRIMORDIAL 
COSMOLOGY

General Non-Linear Sigma Model and curved field space

𝓛 = −
1

2
෍

𝐴,𝐵

𝑔𝜇𝜈𝑮𝑨𝑩 𝝓 𝜕𝜇𝜙
𝐴𝜕𝜈𝜙

𝐵 − 𝑽 𝝓

𝓕𝑵−𝟏

…
𝜻

𝝓𝟏

𝝓𝟐

𝝓𝑵

…

𝓕1

Axions, dilatons, moduli, …  
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Why inviting a primordial cosmologist to the FRIF Day?

Statistical physics

Fundamental InteractionsGravity

Particle physics

PRIMORDIAL 
COSMOLOGY

𝑽 𝝓𝑰𝑹

Convection: →
Diffusion:     ↔

String theory

Stochastic inflation (coarse-graining):

𝜕𝑷

𝜕𝑁
=

𝜕

𝜕𝜙𝐼𝑅

𝑉,𝜙 𝜙𝐼𝑅

3𝐻 𝜙𝐼𝑅
2
− 𝜶

𝐻 𝜙𝐼𝑅

2𝜋

𝜕

𝜕𝜙𝐼𝑅

𝐻 𝜙𝐼𝑅

2𝜋
𝑷 +

1

2

𝜕2

𝜕𝜙𝐼𝑅
2

𝐻 𝜙𝐼𝑅

2𝜋

2

𝑷

𝜶 represents the discretization scheme (Itô/Stratonovich) 6



Why inviting a primordial cosmologist to the FRIF Day?

Quantum physics

Fundamental Interactions

Statistical physics String theory

Gravity

Particle physics

PRIMORDIAL 
COSMOLOGY

[Martin, Micheli, Vennin 2022]

Inflationary two-mode squeezed states:
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Inflation
Reheating

Radiation era
CMB

𝑡 = 10−37 → 10−32s 𝑡 = 380.000 yr

𝜁, 𝛾 𝛿𝑇 𝛿𝜌

Early universe: the cosmological context

Matter era

Scalar fluctuations ∼ density fluctuations → 𝜁 𝑡, Ԧ𝑥

Tensor fluctuations ∼ gravitational waves → 𝛾 𝑡, Ԧ𝑥

𝒕

motivates

Cosmic Microwave Background (CMB)

Inflation

8

predicts

Penzias-Wilson 
(1964)

Planck (2013)



log(𝐸/GeV)

19

16

14

3 Standard Model, LHC

Accessible experiments on Earth

H        Inflation

𝑀GUT Grand Unified Theories

𝑀Pl Planck mass
𝑀s String scale

Scale of inflation is unknown
Particle content  is unknown

Natural units: ℏ = 𝑐 = 1 and the only dimension is energy

? ? ?

Unique framework: general relativity + quantum field theory + precision data

Inflation sensitive to high energies

+
Precision data (current and 

future)

=
Formidable opportunity to test 
high-energy physics beyond the
reach of terrestrial experiments

CMB → 𝜁2 = 4.57 ± 𝟎. 𝟎𝟐 × 10−5

9

Early universe: the high-energy viewpoint



Current = + (scalars)

Future       = (tensors)  ?

Cosmic Microwave Background Large-Scale Structures

Primordial Gravitational Waves 

Objects of study = primordial correlations functions

e.g. 𝜁2 →
2

; 𝛾2 →
2

; 𝜁3 →
3

; etc.
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Early universe: the observational probes
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EARLY UNIVERSE COSMOLOGY AT THE CROSSROADS
Between gravity and particle physics:
the cosmic spectroscopy = primordial non-Gaussianities in multifield inflation 

[LP 2021]

[LP, Aoki, Renaux-Petel, Yamaguchi 2022]

[Aoki, LP, Sano, Yamaguchi, Zhu 2024]

[…]



COSMIC SPECTROSCOPY

𝜻

𝝓𝟏

𝝓𝟐

𝝓𝑵

…

𝓕1

➢ Multifield perturbation theory:

➢ Identify covariant fluctuations: 

➢ Define adiabatic and entropic fluctuations: 

➢ Fix the gauge freedom (comoving gauge): 

𝜙𝐴 𝑡, Ԧ𝑥 = ത𝜙𝐴 𝑡 + 𝛿𝜙𝐴 𝑡, Ԧ𝑥 + ⋯

From covariant models to the Lagrangian for fluctuations

𝑄𝐴 = 𝛿𝜙𝐴 + Γ 𝐵𝐶
𝐴 𝛿𝜙𝐵 𝛿𝜙𝐶/2 + ⋯

𝑄𝜎 = 𝑒𝜎𝐴 𝑄
𝐴 ; 𝑄𝑠

𝛼 = 𝑒𝑠𝐴
𝛼 𝑄𝐴

𝑄𝜎
com = 0 ; 𝑔𝑖𝑗

com = 𝑎2 exp 2𝜻 𝛿𝑖𝑗

𝑄𝑠
𝛼,com = 𝓕𝛼

𝓕𝑵−𝟏

…

Adiabatic-entropic basis

𝓛 = −
1

2
෍

𝐴,𝐵

𝑔𝜇𝜈𝑮𝑨𝑩 𝝓 𝜕𝜇𝜙
𝐴𝜕𝜈𝜙

𝐵 − 𝑽 𝝓

[LP 2021]
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𝜻

𝝓𝟏

𝝓𝟐

𝝓𝑵

…

𝓕1

➢ Multifield perturbation theory:

➢ Identify covariant fluctuations: 

➢ Define adiabatic and entropic fluctuations: 

➢ Fix the gauge freedom (comoving gauge): 

➢ Expand and simplify the action (up to cubic order for bispectrum calculations)

𝜙𝐴 𝑡, Ԧ𝑥 = ത𝜙𝐴 𝑡 + 𝛿𝜙𝐴 𝑡, Ԧ𝑥 + ⋯

From covariant models to the Lagrangian for fluctuations

𝑄𝐴 = 𝛿𝜙𝐴 + Γ 𝐵𝐶
𝐴 𝛿𝜙𝐵 𝛿𝜙𝐶/2 + ⋯

𝑄𝜎 = 𝑒𝜎𝐴 𝑄
𝐴 ; 𝑄𝑠

𝛼 = 𝑒𝑠𝐴
𝛼 𝑄𝐴

𝑄𝜎
com = 0 ; 𝑔𝑖𝑗

com = 𝑎2 exp 2𝜻 𝛿𝑖𝑗

𝑄𝑠
𝛼,com = 𝓕𝛼

𝓕𝑵−𝟏

…

Adiabatic-entropic basis

𝓛 𝜻,𝓕𝜶 = 𝓛 𝟐 𝜻,𝓕𝜶 + 𝓛𝐌𝐚𝐥𝐝𝐚𝐜𝐞𝐧𝐚
𝟑

𝜻 + 𝓛𝐧𝐞𝐰
𝟑

𝜻,𝓕𝜶 +𝓓(𝟑)

Dictating the power spectrum
Dictating the bispectrum

Involve covariant derivatives of 𝑽 𝝓 and of 𝑮𝑨𝑩 𝝓 (Field-space Riemann curvature etc.)

[LP 2021]

𝓛 = −
1

2
෍

𝐴,𝐵

𝑔𝜇𝜈𝑮𝑨𝑩 𝝓 𝜕𝜇𝜙
𝐴𝜕𝜈𝜙

𝐵 − 𝑽 𝝓COSMIC SPECTROSCOPY
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𝓕𝟏𝜻

𝓕𝟐
𝓕𝟑

𝓕𝑵−𝟏

…
𝝎

Flavor basis: 
interactions are 
specified

𝓕𝟏 portal to 𝜻

𝓕𝟐,…,𝑵−𝟏 sterile sector

• Non-trivial mass matrix mixing

• The first entropic field 𝓕𝟏 is quadratically coupled to 𝜻
ℒ

2
⊃−෍

𝛼,𝛽

𝒎𝜶𝜷
𝟐 ℱ𝛼ℱ𝛽 + 𝝎ℱ1 ሶ𝜁

Flavor and mass bases

[LP 2021]COSMIC SPECTROSCOPY

𝝎

𝜻𝓕𝟏

𝓕𝜶
𝓕𝜷𝒎𝜶𝜷

𝟐

perturbative mixing

non-perturbative mixing

𝜻

𝝓𝟏

𝝓𝟐

𝝓𝑵

…

𝓕1

𝓕𝑵−𝟏

…

𝝎 is the rate of turn of the background trajectory

14



𝓕𝟏𝜻

𝓕𝟐
𝓕𝟑

𝓕𝑵−𝟏

…
𝝎

Flavor basis: 
interactions are 
specified

𝓕𝟏 portal to 𝜻

𝓕𝟐,…,𝑵−𝟏 sterile sector

ℒ
2
⊃−෍

𝛼,𝛽

𝒎𝜶𝜷
𝟐 ℱ𝛼ℱ𝛽 + 𝝎ℱ1 ሶ𝜁

Flavor and mass bases

[LP 2021]COSMIC SPECTROSCOPY

𝝎

𝜻𝓕𝟏

𝓕𝜶
𝓕𝜷𝒎𝜶𝜷

𝟐

ℒ
3
⊃

2𝜖𝑀Pl

𝐻
𝝎 ℱ1

𝜕𝜁 2

𝑎2
+ 2𝜖𝐻2𝑀Pl

2 𝑹𝜶𝝈𝜷𝝈
ሶ𝜁ℱ𝛼ℱ𝛽 −

1

6
𝑽;𝜶𝜷𝜸ℱ

𝛼ℱ𝛽ℱ𝛾

𝝎

𝜻𝜻𝜻

𝓕𝜶

𝝎

𝓕𝜶

𝝎

𝝎

𝜻𝜻𝜻

𝑹𝜶𝝈𝜷𝝈

𝓕𝜷

𝓕𝜷

𝝎

𝝎

𝜻𝜻𝜻

𝑽:𝜶𝜷𝜸
𝓕𝜸

𝓕𝜶

𝝎+ +

perturbative mixing

non-perturbative mixing

𝜻𝟑 =

• Non-trivial mass matrix mixing

• The first entropic field 𝓕𝟏 is quadratically coupled to 𝜻

15



ℒmass
2

⊃ −෍

𝑖

𝒎𝒊
𝟐𝜎𝑖

2 + 𝝎𝑶 𝒊
𝟏 𝜎𝑖 ሶ𝜁

Diagonalization: 𝒎𝜶𝜷
𝟐 = 𝑶𝒎𝑶𝑻

𝜶𝜷

and 𝓕𝜶 = 𝑶 𝒊
𝜶 𝝈𝒊

𝝈𝟏

𝜻

𝝈𝟐

𝝈𝑵−𝟏 …

𝝎𝟏 𝝎𝟐

𝝎𝑵−𝟏

Mass basis:
masses are specified

All 𝝈𝒊 are coupled to 𝜁
with 𝝎𝒊

Flavor and mass bases

[LP 2021]

[LP, Aoki, Renaux-Petel, Yamaguchi 2022]

COSMIC SPECTROSCOPY

ℒ
2
⊃−෍

𝛼,𝛽

𝒎𝜶𝜷
𝟐 ℱ𝛼ℱ𝛽 + 𝝎ℱ1 ሶ𝜁

𝝎𝒊

𝜻𝜻𝜻

𝝈𝒊

𝝎𝒊

𝜻𝟑 =෍

𝒊

+ …

16



𝝈𝟏

𝜻

𝝈𝟐

𝝈𝑵−𝟏 …

𝝎𝟏 𝝎𝟐

𝝎𝑵−𝟏

Mass basis:
masses are specified

All 𝝈𝒊 are coupled to 𝜁
with 𝝎𝒊

𝓕𝟏𝜻

𝓕𝟐
𝓕𝟑

𝓕𝑵−𝟏

…
𝝎

Flavor basis: 
interactions are 
specified

𝓕𝟏 portal to 𝜻

𝓕𝟐,…,𝑵−𝟏 sterile sector

Flavor and mass bases

[LP 2021]

COSMIC SPECTROSCOPY

ℒmass
2

⊃ −෍

𝑖

𝒎𝒊
𝟐𝜎𝑖

2 + 𝝎𝑶 𝒊
𝟏 𝜎𝑖 ሶ𝜁

[LP, Aoki, Renaux-Petel, Yamaguchi 2022]

ℒflavor
2

⊃−෍

𝛼,𝛽

𝒎𝜶𝜷
𝟐 ℱ𝛼ℱ𝛽 + 𝝎ℱ1 ሶ𝜁
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This is the Sun

It is emitting electronic neutrinos*

𝝂𝒆

𝝂𝒆

This is me

I am seeing many less electronic neutrinos

𝝂𝝁
𝝂𝝉

𝒙

𝝂𝒆
=

𝝂𝟏

𝝂𝟐
𝝂𝟑

𝒅

NO INTERACTIONS

෍

𝒊

𝑼𝒆𝒊 𝝂𝒊

**Pontecorvo-Maki-Nakagawa-Sakata

Entries of the PMNS** matrix: mixing angles, due to the mass matrix 𝑀𝛼𝛽 of neutrino flavors

𝑬/𝒎𝟑
𝟐

𝟎

*also some 𝜈𝜏 from MSW

Analogy with neutrino oscillations

COSMIC SPECTROSCOPY
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This is the Sun

It is emitting electronic neutrinos*

𝝂𝒆

𝝂𝒆

This is me

I am seeing many less electronic neutrinos

𝝂𝝁
𝝂𝝉

NO INTERACTIONS

Analogy with neutrino oscillations

𝓕𝜶 are the flavor eigenstates and 𝝈𝒊 the freely propagating ones: the mass eigenstates

In particular:                                  with 𝑂 𝑖
1 = cos 𝜃12 cos 𝜃13 , sin 𝜃12 cos 𝜃13 , sin(𝜃13)

Mixing angles
if Nflavor = 3 for example

𝓕𝟏 =෍

𝑖

𝑂 𝑖
1 𝝈𝒊

𝜻 is the “detector”

Inflationary flavor oscillations
due to the misalignment
between flavor and mass

eigenstates

COSMIC SPECTROSCOPY
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This is the Sun

It is emitting electronic neutrinos*

𝝂𝒆

𝝂𝒆

This is me

I am seeing many less electronic neutrinos

𝝂𝝁
𝝂𝝉

NO INTERACTIONS

Analogy with neutrino oscillations

𝓕𝜶 are the flavor eigenstates and 𝝈𝒊 the freely propagating ones: the mass eigenstates

In particular:                                  with 𝑂 𝑖
1 = cos 𝜃12 cos 𝜃13 , sin 𝜃12 cos 𝜃13 , sin(𝜃13)

Mixing angles
if Nflavor = 3 for example

𝓕𝟏 =෍

𝑖

𝑂 𝑖
1 𝝈𝒊

𝜻 is the “detector”

Inflationary flavor oscillations
due to the misalignment
between flavor and mass

eigenstates

What process equivalent to the missing solar

neutrinos may hint at inflationary flavor

oscillations? 

COSMIC SPECTROSCOPY
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Squeezing: 𝜿 = 𝒌𝟑/𝒌𝟏,𝟐
𝒌

𝒌
𝜿 × 𝒌𝜁𝑘𝜁𝑘𝜁𝜅×𝑘

Inflationary flavor oscillations and the cosmic spectroscopy

Squeezed limit of the bispectrum:

Single-field: 𝒇𝐍𝐋
𝐬𝐪

∝ 𝜿 ≪ 𝟏 Two-field: 𝒇𝐍𝐋
𝐬𝐪

∝ 𝜿 𝐜𝐨𝐬
𝒎

𝑯
𝐥𝐧 𝜿 + 𝝋

𝐥𝐧 𝜿 𝐥𝐧 𝜿

[Chen, Wang 2008]
[Noumi, Yamaguchi, Yokoyama 2013]

[Arkani-Hamed, Maldacena 2015]

[Maldacena 2003]
[Tanaka, Urakawa 2011]
[Pajer, Schmidt, Zaldarriaga 2013]

One entropic fluctuation
Flavor basis = Mass basis

No mixing angle
No flavor oscillations

𝒇𝐍𝐋
𝐬𝐪

𝜿 𝒇𝐍𝐋
𝐬𝐪

𝜿

cosmological collider signal

COSMIC SPECTROSCOPY
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Squeezing: 𝜿 = 𝒌𝟑/𝒌𝟏,𝟐
𝒌

𝒌
𝜿 × 𝒌𝜁𝑘𝜁𝑘𝜁𝜅×𝑘

Inflationary flavor oscillations and the cosmic spectroscopy

Squeezed limit of the bispectrum:

Single-field: 𝒇𝐍𝐋
𝐬𝐪

∝ 𝜿 ≪ 𝟏

Two-field: 𝒇𝐍𝐋
𝐬𝐪

∝ 𝜿 𝐜𝐨𝐬
𝒎

𝑯
𝐥𝐧 𝜿 + 𝝋

Here we look at 𝟑 𝐟𝐢𝐞𝐥𝐝𝐬 = 2 flavors:  𝜻, 𝓕𝟏, 𝓕𝟐 ↔ 𝜻, 𝝈𝟏, 𝝈𝟐 𝜽
𝜽

𝝈𝟏

𝝈𝟐

𝓕𝟏

𝓕𝟐

𝝎𝒊

𝜻𝜻𝜻

𝝈𝒊

𝝎𝒊

COSMIC SPECTROSCOPY

22



Squeezing: 𝜿 = 𝒌𝟑/𝒌𝟏,𝟐
𝒌

𝒌
𝜿 × 𝒌

The cosmic spectroscopy

𝒎

𝑯

𝜿−𝟏/𝟐𝒇𝐍𝐋
𝐬𝐪

𝜿

ln(𝜿)

𝜽 = 𝝅/𝟏𝟎

𝜽 = 𝟎

𝒎𝟏 ∼ 𝟐. 𝟓𝑯
𝒎𝟐 ∼ 𝟐𝑯

2 2.5

𝜽 = 𝝅/𝟏𝟎

𝜽 = 𝟎

[LP, Aoki, Renaux-Petel, Yamaguchi 2022]

𝜁𝑘𝜁𝑘𝜁𝜅×𝑘

Inflationary flavor oscillations and the cosmic spectroscopy

Squeezed limit of the bispectrum:

Single-field: 𝒇𝐍𝐋
𝐬𝐪

∝ 𝜿 ≪ 𝟏

Two-field: 𝒇𝐍𝐋
𝐬𝐪

∝ 𝜿 𝐜𝐨𝐬
𝒎

𝑯
𝐥𝐧 𝜿 + 𝝋

Here we look at 𝟑 𝐟𝐢𝐞𝐥𝐝𝐬 = 2 flavors:  𝜻, 𝓕𝟏, 𝓕𝟐 ↔ 𝜻, 𝝈𝟏, 𝝈𝟐 𝜽
𝜽

𝝈𝟏

𝝈𝟐

𝓕𝟏

𝓕𝟐

𝝎𝒊

𝜻𝜻𝜻

𝝈𝒊

𝝎𝒊

COSMIC SPECTROSCOPY
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Other diagrams

• [Aoki, LP, Sano, Yamaguchi, Zhu 2024] 

Recent calculation of double-exchange channel with bootstrap-inspired techniques

𝝈𝒊

𝝎𝒊

𝝎𝒋

𝜻𝜻𝜻

𝑹𝒊𝒋

𝝈𝒋

field-space curvature dependent coupling

𝑫 ⋅ 𝑰𝐝𝐨𝐮𝐛𝐥𝐞 = 𝑰𝐬𝐢𝐦𝐩𝐥𝐞

differential operator 
in 𝒌-space

double-exchange 
« seed »

single-exchange 
« seed »

COSMIC SPECTROSCOPY

• [Werth, LP, Renaux-Petel 2023]

[LP, Renaux-Petel, Werth 2023]
[Werth, LP, Renaux-Petel 2024]

Systematic numerical evolution for any diagram
https://github.com/deniswerth/CosmoFlow

𝟐𝐧𝐝 Buchalter Cosmology Prize 2023 

𝒎/𝑯

𝜿
−
𝟏
/𝟐
𝒇
𝐍
𝐋

𝐬𝐪
𝜿

𝒇
𝐍
𝐋

𝐞
𝐪

𝜿

𝝎/𝑯 = 𝟎. 𝟏 m/𝑯 = 3

24

https://github.com/deniswerth/CosmoFlow


25

EARLY UNIVERSE COSMOLOGY AT THE CROSSROADS
Towards a bright observational future

Penzias-
Wilson

1964

1992 2006 2018

CMB

[credits: NASA]

e-BOSS
(2014-2020)

2-dFGRS
(~2000)

BOSS
(2009-2014)

DESI (2020-?)
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✓ Build realistic templates with all interactions and parameter
space

✓ Model-independent tests of primordial particle content

✓ Synergies between analytical and numerical methods

Euclid
DESI SPHEREx

2019 20252023 20292027 2032 2035

Primordial non-Gaussianities and large-scale structures

A BRIGHT FUTURE



Primordial tensor modes:

27

LiteBIRDCMB-S4

2019 20252023 20292027 2032 2035

Simons 
Observatory

✓ Scenarios motivated by high-energy physics, e.g. with gauge fields

Primordial features: ✓ Guaranteed information gain, cross-checks with galaxy surveys

Extreme precision for linear fluctuations

A BRIGHT FUTURE



✓ Theoretical “sanity checks” program for a theoretically consistent phenomenology

✓ Remain open to potential discoveries, e.g. anisotropies of primordial origin

Primordial gravitational-wave background:

28

2019 20252023 20292027 2032 2035

LISA

A new probe for the early universe in vastly different regimes

A BRIGHT FUTURE
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Euclid
DESI SPHEREx

LiteBIRDCMB-S4

2019 20252023 20292027 2032 2035

Simons 
Observatory

LISA

Exciting era for primordial cosmology

But discoveries = data + interpretation

Approximate budgets

Total ≃ 4 billions $

𝟒𝟎𝟎𝐌$
𝟔𝟎𝟎𝐌$ 𝟒𝟎𝟎𝐌$

𝟐𝟎𝟎𝐌$ 𝟐𝟓𝟎𝐌$ 𝟓𝟎𝟎𝐌$ 𝟏𝟕𝟎𝟎𝐌$

Towards a standard model of inflation

A BRIGHT FUTURE
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EARLY UNIVERSE COSMOLOGY AT THE CROSSROADS
Conclusion

• Requires understanding of all fundamental interactions → fun*

• Will enable to test fundamental physics with precision and numerous data → promising

• Many techniques could be imported from other fields and need of work force → collaborative

*at least for a theoretical physicist

Personal subjects of interest dropping: 

➢ Loop corrections and UV divergences in inflation
➢ Borel resumation of  divergent time series in stochastic inflation
➢ Effective field theories for cosmological fluctuations and non-linearly realized symmetries
➢ Path integral representations of the in-in Schwinger-Keldysh formalism
➢ Primordial features beyond approximate scale invariance in string-inspired landscapes 



BACKUP SLIDES



Cosmic Microwave Background

Penzias-
Wilson

1964

1992 2006 2018

CMB

LiteBIRD
(2032-?)

Simons Observatory
(2024-?)

CMB-S4
(2029-?)

The coming one
(Chile)

Multiple telescopes
Better foreground removal

Satellite
Much better for low-ℓ

[credits: NASA]
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Large-Scale Structures

DESI (2020-?)

e-BOSS
(2014-2020)

2-dFGRS
(~2000)

BOSS
(2009-2014)

PUMA, MegaMapper, …
Euclid (2023-?)

Schlegel, Ferraro et al. 2022
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Gravitational-Wave Backgrounds

Anisotropies in LISA (2034-?)

“No GW background” hypothesis is  excluded at 𝟑𝝈

IPTA (2012-?)

Schmitz 2020

DECIGO, BBOEinstein Telescope Cosmic Explorer
USA Japan        USA+Europe

Europe

Europe
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