Black Mirrors: CPT-Symmetric Alternatives to Black Holes

(based on arXiv:2412.09558, with Kostas Tsanavaris & Neil Turok) (also see arXiv:1212.4176 by Afshordi&Saravani)

Schwarzschild Metric (1916)

SCHWARZSCHILD: Über das Gravitationsfeld eines Massenpunktes

Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie.

Von K. Schwarzschild.

(Vorgelegt am 13. Januar 1916 [s. oben S. 42].)

$$ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2d\Omega^2$$

$$f(r) \equiv 1 - \frac{2m}{r}$$
 and $d\Omega^2 \equiv d\theta^2 + \sin^2\theta \, d\varphi^2$.

Einstein-Rosen Bridge/Wormhole (1935)

JULY 1, 1935

PHYSICAL REVIEW

VOLUME 48

The Particle Problem in the General Theory of Relativity

A. EINSTEIN AND N. ROSEN, Institute for Advanced Study, Princeton (Received May 8, 1935)

$$ds^{2} = -\frac{2m}{r(\sigma)} \left(\frac{\sigma}{4m}\right)^{2} dt^{2} + \frac{r(\sigma)}{2m} d\sigma^{2} + r(\sigma)^{2} d\Omega^{2}$$

$$r(\sigma) = 2m[1 + (\frac{\sigma}{4m})^2]$$

Oppenheimer-Snyder (1939)

SEPTEMBER 1, 1939 PHYSICAL REVIEW VOLUME 56

On Continued Gravitational Contraction

J. R. Oppenheimer and H. Snyder University of California, Berkeley, California (Received July 10, 1939)

Eddington-Finkelstein (Penrose?) Coordinates

GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES

Roger Penrose Department of Mathematics, Birkbeck College, London, England (Received 18 December 1964)

$$ds^{2} = -f(r)dv_{\pm}^{2} \pm 2 dv_{\pm} dr + r^{2}d\Omega^{2}$$

$$dv_{\pm} = dt \pm \frac{dr}{f(r)}$$

Reasons to be suspicious of the interior:

- 1) Hidden from observation?
- 2) Curvature singularities
- 3) Cauchy horizons (breakdown of causality)
- 4) Information paradox (violation of unitarity?)
- 5) Does hole evaporate before inflating matter gets in?

Euclidean Schwarzschild Metric (Gibbons-Hawking, 1977)

PHYSICAL REVIEW D

VOLUME 15, NUMBER 10

15 MAY 1977

Action integrals and partition functions in quantum gravity

G. W. Gibbons* and S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England

(Received 4 October 1976)

$$ds^{2} \approx \frac{\sigma^{2}}{(4m)^{2}}d\tau^{2} + d\sigma^{2} + (2m)^{2}d\Omega^{2}$$

$$t(au) = -i au$$

$$\tau \sim \tau + 8\pi m$$

$$ds^{2} = -\frac{2m}{r(\sigma)} \left(\frac{\sigma}{4m}\right)^{2} dt^{2} + \frac{r(\sigma)}{2m} d\sigma^{2} + r(\sigma)^{2} d\Omega^{2}$$

$$r(\sigma) = 2m[1 + (\frac{\sigma}{4m})^2]$$

$$ds^{2} = -\frac{2m}{r(\sigma)} \left(\frac{\sigma}{4m}\right)^{2} dv_{\pm}^{2} \pm \frac{\sigma}{2m} d\sigma \, dv_{\pm} + r(\sigma)^{2} d\Omega^{2}$$

$$dv_{\pm} = dt \pm rac{dr}{f(r)}$$

$$ds^{2} = -\frac{2m}{r(\sigma)} \left(\frac{\sigma}{4m}\right)^{2} dt^{2} + \frac{r(\sigma)}{2m} d\sigma^{2} + r(\sigma)^{2} d\Omega^{2}$$

$$r(\sigma) = 2m[1 + (\frac{\sigma}{4m})^2]$$

$$ds^{2} = -\frac{2m}{r(\sigma)} \left(\frac{\sigma}{4m}\right)^{2} dv_{\pm}^{2} \pm \frac{\sigma}{2m} d\sigma \, dv_{\pm} + r(\sigma)^{2} d\Omega^{2}$$

$$dv_{\pm} = dt \pm \frac{dr}{f(r)}$$

$$ds^{2} = -\frac{2m}{r(\sigma)} \left(\frac{\sigma}{4m}\right)^{2} dt^{2} + \frac{r(\sigma)}{2m} d\sigma^{2} + r(\sigma)^{2} d\Omega^{2}$$

$$r(\sigma) = 2m[1 + (\frac{\sigma}{4m})^2]$$

$$ds^{2} = -\frac{2m}{r(\sigma)} \left(\frac{\sigma}{4m}\right)^{2} dv_{\pm}^{2} \pm \frac{\sigma}{2m} d\sigma \, dv_{\pm} + r(\sigma)^{2} d\Omega^{2}$$

$$dv_{\pm} = dt \pm rac{dr}{f(r)}$$

 $g_{\alpha\beta}, \ R^{\alpha}_{\ \beta\gamma\delta}, \ \ {
m all \ curvature \ invariants} \ R^{\alpha\beta\gamma\delta}R_{\alpha\beta\gamma\delta}$

are smooth, analytic, and finite

 $R_{\mu\nu} = 0$ everywhere (vacuum solution)

But no free lunch!

 $|g_{\mu\nu}|$ eigenvalues: holomorphic, two simple zeros

 $g^{\mu\nu}$ eigenvalues: meromorphic, two simple poles

Matching surface (horizon) is a *Carrollian* geometry

The Charged, Rotating Black Mirror Solution

$$ds^{2} = \tilde{\eta}_{ab}\tilde{e}^{a}\tilde{e}^{b}, \quad \tilde{\eta}_{ab} = \begin{pmatrix} -\frac{\Delta_{r}}{\rho^{2}} & \pm 1 & 0 & 0\\ \pm 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\tilde{e}^{0} = dv - \frac{a\sin^{2}\theta}{\Xi}d\hat{\phi}$$

$$\tilde{e}^{1} = dr$$

$$\tilde{e}^{2} = \frac{\rho}{\Delta_{\theta}^{1/2}}d\theta$$

$$F = -\frac{1}{\rho^4} [q_e(r^2 - a^2 \cos^2 \theta) + 2q_m r a \cos \theta] \tilde{e}^0 \wedge \tilde{e}^1$$
$$+ \frac{1}{\rho^4} [q_m(r^2 - a^2 \cos^2 \theta) - 2q_e r a \cos \theta] \tilde{e}^2 \wedge \tilde{e}^3$$

$$\tilde{e}^{0} = dv - \frac{a\sin^{2}\theta}{\Xi}d\hat{\phi}$$

$$\tilde{e}^{1} = dr$$

$$\tilde{e}^{2} = \frac{\rho}{\Delta_{\theta}^{1/2}}d\theta$$

$$\tilde{e}^{3} = \frac{\Delta_{\theta}^{1/2}\sin\theta}{\rho}(a\,dv - \frac{r^{2} + a^{2}}{\Xi}d\hat{\phi})$$

$$\Delta_{\theta} \equiv 1 - \frac{a^2}{\ell^2} \cos^2 \theta, \quad \Delta_r \equiv (r^2 + a^2) \left(1 + \frac{r^2}{\ell^2} \right) - 2mr + q^2$$

$$\rho^2 \equiv r^2 + a^2 \cos^2 \theta, \quad \Xi \equiv 1 - \frac{a^2}{\ell^2}$$

$$r(\sigma) = r_+ + \sigma^2$$

Vanishing entropy on full space —> pure state Non-vanishing entropy on half-space —> entanglement entropy

PHYSICAL REVIEW D VOLUME 15, NUMBER 10 15 MAY 1977

Action integrals and partition functions in quantum gravity

G. W. Gibbons* and S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England

(Received 4 October 1976)

$$ds^2 \approx \frac{\sigma^2}{(4m)^2} d\tau^2 + d\sigma^2 + (2m)^2 d\Omega^2$$

$$t(\tau) = -i\tau$$

$$\tau \sim \tau + 8\pi m$$

The Black Mirror Solution From CPT-symmetric b.c.'s

dynamical collapse

and evaporation

A U/\bar{U} pair?

(Stueckelberg, 1941)

Multipole moment, ℓ

The Black Mirror Solution From Cosmology

Reasons to be suspicious of the interior (revisited):

- 1) Hidden from observation?
- 2) Curvature singularities
- 3) Cauchy horizons (breakdown of causality)
- 4) Information paradox (violation of unitarity?)
- 5) Does hole evaporate before infalling matter gets in?

Reasons to be suspicious of the interior (revisited):

- 1) Hidden from observation?
- 2) Curvature singularities
- 3) Cauchy horizons (breakdown of causality)
- 4) Information paradox (violation of unitarity?)
- 5) Does hole evaporate before infalling matter gets in? Thank you for listening!

Primordial Perturbations 1) "Ringing" CMB spectrum: The Big Bang Multipole moment, ℓ 6000 5000 Mirror! 3000 2000 1000 0.07° Angular scale 2) No primordial vorticity 3) No singular perturbations

Standard Model of Elementary Particles

Standard Model of Elementary Particles

Dark Matter

Predictions:

- 1) m = 4.8×108 GeV = 5×108 mproton
- 2) Park matter is cold
- 3) lightest neutrino is massless
 - just confirmed by DESI!
- 4) neutrinoless double beta decay rate (still a decade or two away)
- 5) no primordial gravitational waves

 (in contrast to inflation,

 tested by CMB polarization expts.)
- · Just like Hawking radiation from Black Hole

from Big Bang

The gravitational entropy of the universe

Image Credit: Quanta Magazine

Explains: cosmic flatness, homogeneity, isotropy, and tiny positive cosmological constant

Step 1. Obtain general solution for the cosmic scale factor:

$$H^{2} = \frac{8\pi G}{3} \left(\frac{r}{a^{4}} + \frac{\mu}{a^{3}} + \lambda \right) - \frac{\kappa}{a^{2}}$$

Step 2. Obtain general formula for the gravitational entropy of an FRW universe:

Flat universes and tiny positive Lambda are favoured!

Step 3. Add cosmological perturbations (small inhomogeneities and isotropies):

If the Big Bang is a mirror, these cost entropy!

Grav. entropy is largest for universes like ours: homogeneous, isotropic and flat (with tiny positive Lambda)!

A measure on the space of universes.

Arrow of Time free - high entropy boundary Parrow of time iow entropy boundary larrow of time free high entropy Symmetry + analyticity